JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological
University, Kerala) Since 1968

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(NBA Accredited)

COURSE MATERIAL

CST 305 SYSTEM SOFTWARE

VISION OF THE INSTITUTION

Jawaharlal College of Engineering and Technology, Mangalam intends to emerge as a centre of excellence
imparting high quality education encompassing professional ethics, teaching and research to the students and
faculty in the fields of Aeronautical, Electronics, Mechanical, Computer Engineering, Civil, Electrical,
Management and other frontier technological areas of knowledge.

MISSION OF THE INSTITUTION

e To become an ultimate destination for acquiring latest and advanced knowledge in the
multidisciplinary domains.

e To provide high quality education in engineering and technology through innovative teaching-learning
practices, research and consultancy, embedded with professional ethics.

e To promote intellectual curiosity and thirst for acquiring knowledge through outcome-based education.

e To have partnership with industry and reputed institutions to enhance the employability skills of the
students and pedagogical pursuits.

e To leverage technologies to solve the real-life societal problems through community services.

ABOUT THE DEPARTMENT

> Established in: 2008

» Courses offered: B.Tech in Computer Science and Engineering

> Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION

To produce competent professionals with research and innovative skills, by providing them with the most
conducive environment for quality academic and research oriented undergraduate education along with moral
values committed to build a vibrant nation.

DEPARTMENT MISSION

e Provide a learning environment to develop creativity and problem-solving skills in a professional
manner.

e Expose to latest technologies and tools used in the field of computer science.

e Provide a platform to explore the industries to understand the work culture and expectation of an
organization.

e Enhance Industry Institute Interaction program to develop the entrepreneurship skills.

e Develop research interest among students which will impart a better life for the society and the nation.

PROGRAMME EDUCATIONAL OBJECTIVES

Graduates will be able to

e Provide high-quality knowledge in computer science and engineering required for a computer
professional to identify and solve problems in various application domains.

e Persist with the ability in innovative ideas in computer support systems and transmit the knowledge
and skills for research and advanced learning.

e Manifest the motivational capabilities, and turn on a social and economic commitment to community
services.

PROGRAM OUTCOMES (POS)
Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an
engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems
reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system
components or processes that meet the specified needs with appropriate consideration for the public health and
safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including
design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid
conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT
tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health,
safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal
and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the
engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams,
and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community
and with society at large, such as, being able to comprehend and write effective reports and design documentation,
make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and
management principles and apply these to one’s own work, as a member and leader in a team, to manage projects
and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and
life-long learning in the broadest context of technological change.

COURSE OUTCOMES

CST305.1 C303.1 | Distinguish software’s into system and application software categories.

CST305.2 C303.2 | Identify standard and extended architectural features of machines.

CST305.3 C303.3 | Identify machine dependent features of system software

CST305.4 C303.4 | Identify machine independent features of system software.

CST3055 C3035 Design algorithms for system software’s and analyse the effect of data structures
' ' and understand the features of device drivers and editing & debugging tools

PROGRAM SPECIFIC OUTCOMES (PSO)

The students will be able to

Use fundamental knowledge of mathematics to solve problems using suitable analysis methods, data

structure and algorithms.

Interpret the basic concepts and methods of computer systems and technical specifications to provide

accurate solutions.

Apply theoretical and practical proficiency with a wide area of programming knowledge, design new

ideas and innovations towards research.

CO PO PSO MAPPING

Note: H-Highly correlated=3, M-Medium correlated=2,L-Less correlated=1

Subject
Code

Course
Code

PO1

PO2

PO3

PO4

PO5

PO6

PO7

PO8

PO9

PO10

PO11

PO12

PSO1

PSO2

PSO3

CST305.1

C303.1

CST305.2

C303.2

CST305.3

C303.3

N | W

CST305.4

C303.4

CST305.5

C303.5

W | w [N | W | w

CS303

C303

2.667

NN NN

Year of
CST SYSTEM Category (L | T| P S Introduction
305 SOFTWARE
PCC 3 1 |0 4 2019
Preamble:

The purpose of this course is to create awareness about the low-level codes which are very close
to the hardware and about the environment where programs can be developed and executed. This
course helps the learner to understand the machine dependent and machine independent system
software features and to design/implement system software like assembler, loader, linker,
macroprocessor and device drivers. Study of system software develops ability to design
iterfaces between software applications and computer hardware.

Prerequisite: A sound knowledge in Data Structures, and Computer Organization

Course Outcomes: After the completion of the course the student will be able to

CO# Course Outcomes
CcoO1 Distinguish softwares into system and application software categories.
(Cognitive Knowledge Level: Understand)
CcO2 Identify standard and extended architectural features of machines.
(Cognitive Knowledge Level: Apply)
CO3 Identify machine dependent features of system software
(Cognitive Knowledge Level: Apply)
CO4 Identify machine independent features of system software.
(Cognitive Knowledge Level: Understand)
COs5 Design algorithms for system softwares and analyze the effect of data structures.
(Cognitive Knowledge Level: Apply)
CcO6 Understand the features of device drivers and editing & debugging tools.(Cognitive

Knowledge Level: Understand)

Module-1 (Introduction)
System Software vs Application Software, Different System Software— Assembler, Linker,
Loader, Macro Processor, Text Editor, Debugger, Device Driver, Compiler, Interpreter,
Operating System (Basic Concepts only). SIC & SIC/XE Architecture, addressing modes, SIC
&SIC/XE Instruction set, Assembler Directives.
Module-2 (Assembly language programming and Assemblers)
SIC/XE Programming, Basic Functions of Assembler, Assembler Output Format — Header,
Text and End Records. Assembler Data Structures, Two Pass Assembler Algorithm, Hand
Assembly of SIC/XE Programs.
Module-3 (Assembler Features and Design Options)
Machine Dependent Assembler Features-Instruction Format and Addressing Modes, Program
Relocation. Machine Independent Assembler Features —Literals, Symbol Defining statements,
Expressions, Program Blocks, Control Sections and Program Linking. Assembler Design
Options- One Pass Assembler, Multi Pass Assembler. Implementation Example-MASM
Assembler.
Module-4 (Loader and Linker)
Basic Loader Functions - Design of Absolute Loader, Simple Bootstrap Loader. Machine
Dependent Loader Features- Relocation, Program Linking, Algorithm and Data Structures of
Two Pass Linking Loader. Machine Independent Loader Features -Automatic Library Search,
Loader Options. Loader Design Options.

Module-5 (Macro Preprocessor, Device driver, Text Editor and Debuggers)
Macro Preprocessor - Macro Instruction Definition and Expansion, One pass Macro processor
Algorithm and data structures, Machine Independent Macro Processor Features, Macro
processor design options. Device drivers - Anatomy of a device driver, Character and block
device drivers, General design of device drivers. Text Editors- Overview of Editing, User
Interface, Editor Structure. Debuggers - Debugging Functions and Capabilities, Relationship
with other parts of the system, Debugging Methods- By Induction, Deduction and

Backtracking.

QUESTION BANK

MODULE |

QUESTION
S

Define the Functions of an Assembler

List any Four Addressing modes of SIC/XE

Summarize the instruction formats used in SIC

Write the sequence of instructions for SIC/XE to
divide BETA by GAMA and to store integer
quotientin ALPHA reminder in DELTA

[llustrate the SIC/XE architecture, Explaining in
detaildata and instruction formats.

Describe the format of Object Program generated
bythe Two Pass SIC Assembler Algorithm

Summarize debugger, text editor and device driver.

Illustrate the SIC architecture in detail.

Differentiate System software and
applicationsoftware.

Summarize the instruction formats used in SIC/XE

Discuss the SIC/XE memory, registers, data and
instruction formats and addressing modes

Let NUMBERS be an array of 100 words. Write
asequence of instructions for SIC and SIC/XE to set
all

100 elements of the array to 1.

MODULE II

Define the Functions of an Assembler

Describe Program Relocation

List Assembler directives in SIC

Give the Algorithm for Pass1 of two Pass SIC
Assembler

Describe the format of Object Program generated
bythe Two Pass SIC Assembler Algorithm

Give the use of SYMTAB and OPTAB

| Explain the Algorithm for Pass2 of SIC Assembler

MODULE Il

Define Literals.

With example, write notes on program blocks.

Summarize Symbol defining statements in assemblers.

Give the purpose of EXTREF and EXTDEF
assembler directives

Write short notes on MASM Assembler

Give the structure and purpose of Modification record
and Define record

Explain the concept of single pass assembler with
suitable example

Illustrate control sections and program blocks

Explain in detail about Control section and its
different records .

Explain in detail assembler independent features-
literals, symbol defining statements and expressions.

Differentiate control sections and program blocks in
detail and also point out the assembler directives

Explain the external reference handling of an
assembler

Define forward reference. lllustrate the forward
reference handling by a single pass assembler.

MODULE IV

Point out Relocation , Linking and Loading.

Write notes on different loader design options

State and explain two pass algorithm for a linking
loader.

Write short note on dynamic linking

Explain detail about machine dependent features of
loader.

State and explain pass one algorithm for a linking
loader

Write notes in detail about program linking.

Explain with example dynamic linking and automatic
library search.

9 | Listand explain different loader options | CO4 | K1&K2
MODULE V

1 Illustrate about recursive macro expansion. CO5 K3

2 Design an iterative algorithm for a one pass macro COs5 K5
processor

3 Differentiate between a macro and a subroutine. CO5 K4
Illustrate macro definition and expansion using an
example.

4 Illustrate about recursive macro expansion. CO5 K3

5 Write note on conditional macro expansion. COs5 K3

6 Illustrate the data structure required for a macro COs K3
processor algorithm and explain the format of each.

7 Illustrate about macro definion and expansion COs K3

8 Explain keyword macro parameters and how unique CO5 K5
label generated in a macro
expansion.

9 Explain the macro processor algorithm CO5 K5

10 Differentiate between character and block device CO5 K4
drivers.

11 Explain the structure of text editor with the help of a COs K5
diagram.

12 Discuss about device drivers with neat sketch. CO5 K2

13 Explain about debugging and different debugging CO5 K5
techniques.

14 Differentiate Text editor and debugger CO5 K4

15 Explain the design of driver with diagrammatic COs K5
representation.

16 Describe the function and capabilities of interactive COs K5
debugging system.

17 Explain different debugging methods in detail. Whatis | CO5 K5
a debugger?

MODULE 1

SOFTWARE
e Set of instructions given to the computer.
e We cannot touch and feel it.
e Developed by writing instructions in programming language.
e Operations of computer are controlled via this.
e |f damaged or corrupted, back up copy can be installed again.

e Eg:- Antivirus, Microsoft Office Tools.

HARDWARE
e Physical parts of a computer.
e We can touch and feel it.
e Constructed using physical components.
e Operates under control of software.
e If damaged, can be replaced.

e Eg:- Keyboard, Monitor, Mouse

SOFTWARE vs HARDWARE

SOFTWARE HARDWARE
1. Collection of instructions that tells 1. Physical elements of computer
computer what to do
2. Dividedinto 2. Categories
a. System Software a. Input Devices.

b. Application Software b. Output Devices

c. Utility Software c. Storage Devices

3. Should be installed in to computer 3. Once software is loaded these can
be used.
4. Prone to viruses 4. No virus attacks
5. If damaged/ corrupted 5. If damaged, can be replaced.
reinstallation is possible
Eg:- Microsoft Office, Adobe Eg:- Mouse, Monitor, Keyboard
TYPES OF SOFTWARE

1. System Software:
e Contains collection of programs that support operation of computer.
e Helps to run computer hardware and computer system.
e Handles running of computer hardware.
e These are of different types”
a) Operating System
b) Language Translators
i. Compiler
ii. Assembler
iii. Interpreter
iv. Macro Processor
c) Loader
d) Linker
e) Debugger
f) Text Editor

2. Application Software:
e |t allows end users to accomplish one or more specific tasks.

e Focus on application or problem to be solved.

Operating System

e Acts as interface between user and system.
e Provide user friendly interface.
e Functions:

a) Process Management

b) Memory Management

c) Resource Management

d) 1/0 Operations

e) Data Management

f) Provide Security for job.

Language Translators

e Program that takes input program in one language and produces an output in another

language.
‘ CONVERT
I.Compilers

e Translates program in high level language in to machine level language.
e Conversion or translation is taking place by taking program as whole.
e Bridges the semantic gap between language domain and execution domain.

e Perform syntax analysis, semantics analysis and intermediate code generation.

Program in High Level Compiler > Program in
Language Machine Language
Source code

Object Code

I1. Interpreters

e Translates statement of high level language in to machine level language by taking
the program line by line.

e Interpretation cycle includes:
1) Fetch the statement.
i) Analyze the statement and determine its meaning.

iii) Execute the meaning of statement.

I11. Assemblers

e Programmers found it difficult to read or write programs in machine language, so for
convenience they used mnemonic symbols for each instruction which is translated to
machine language.

e Assemblers translate assembly language to machine language.
e Translate mnemonic code to machine language equivalents.

e Assign machine address to symbol table.

,,,,,,,,,,,,,,, 01101101
'''''''''''' 11000110

111111111111111

11111111111111

lllllllllllllll

00101111
10110001

.....

Source Binary
text file Machine
Language
Working:
e Find the required information to perform task.
e Analyze and design suitable data structures to hold and manipulate information.
e Find the process or steps needed to gather information and maintain it.

e Determine processing step required to execute each identified task.

COMPILER vs INTERPRETER vs ASSEMBLER

COMPILER VS INTERPRETER VS
ASSEMBLER

Software that converts B Software that translates | Software that converts

programs written in a a high level language programs written in

assembly language into

high level language program into machine

into machine language language machine language

Converts the whole Converts the high
, Converts assembly
high level language level language
, : language program to
program to machine program to machine)
machine language

language at a time language line by line

Used by C, C++

Used by Ruby, Perl,
Python, PHP

Used by assembly

language

Linker

e Process of collecting and combining various pieces of code and data in to single file
that can be loaded in to memory and executed.

e Linking performed a compile time, when source code is translated to machine code, at
load time, when program is loaded in to memory and executed by loader and at run time
by application programs.

Types:

a) Linking Loader: Performs all linking and relocation operations directly in to main memory
for execution.

b) Linkage Editor: Produce a linked version of program called as load module or executable
image. This load module is written in to file or library for later execution.

c) Dynamic Linker: This linking postpones the linking function until execution time.
Also called as dynamic loading.

Loader
e Ultility of an operating system.
e Copies program from a storage device to computer’s main memory.
e They can replace virtual address with real address.

e They are invisible to user.

Debugger

e An Interactive debugging system provides programmers with facilities that aid in
testing and debugging of programs.

e Debugging means locating bugs or faults in program.
e Helps in fixing error.

e Determination of exact nature and location of error in the program.

Device Driver

e Itis a software module which manages the communication and control of specific
I/O device on type of device.

e Convert logical requests from the user in to specific commands directed to device itself.

Macro Processor

e Macro is the unit of specification of program generation through expansion.

e Macros are special code fragments that are defined once in the program and used by
calling them from various places within the program.

e Macro processor is a program that copies stream of text from one place to another,
making a systematic set of replacements as it does so.

e They are often embedded in other programs such as assemblers and compilers.

e Before you can use a macro, you must define it explicitly with the “#define' directive.
“#define' is followed by the name of the macro and then the code it should be an
abbreviation for. For example,

#define BUFFER_SIZE 1020

defines a macro named ‘BUFFER_SIZE' as an abbreviation for the text “1020'

Text Editors

e Program that allows the user to create the source program in the form of text in to the
main memory.

e Creation, edition, deletion, updating of document or files can be done with the help of
text editor.

SIMPLIFIED INSTRUCTIONAL COMPUTER (SIC)
e Itis a hypothetical computer that has hardware features which are found in real machines.
e To versions:
a). SIC Standard Model
b). SIC/XE (Extra Equipment)
Machine Dependent features of Software System:
1. Assembler: Instruction format, Addressing mode.
2. Compiler: Registers, Machine Instructions.
3. OS: All resources of computing system.
Machine Independent features of Software
System:
1. General design and logic of assembler.
2. Code optimization in compiler

3. Linking independently assembled subprogram

SIC ARCHITECTURE- STANDARD MODEL

e It has basic addressing, storing most memory addresses in hexadecimal integer format.

e Its machine architecture includes

1. Memory: There are 2%° bytes in the computer memory that is 32768 bytes.

A word (3 bytes)

MRS

oL 2

~

32768 = 2'° bytes
2. Register:
> Used as storage locations that perform some functions.

» There are 5 registers each of them is of 24 bits length.

Five Registers

Mnemonic Number Special use
A 0 Accumulator; used for arithmetic operations
X 1 Index register; used for addressing
L 2 Linkage register; the Jump to Subroutine (JSUB)

instruction stores the return address
in this register

PC 8 Program counter; contains the address of the
next instruction to be fetched for execution

SW 9 Status word; contains a variety of
information, including a Condition Code (CC)

3. Data Formats:

> It supports only the Integer and Character data formats.

> There is no hardware support for floating point numbers.
> Integers stored as 24 bit binary numbers.
> Negative values represented as 2’s complement.
> Character data stored as 8 bit ASCII codes.
4. Instruction Formats:

> All machine instructions in the standard version of SIC have the
following 24 bit format:

8 1 15
OPCODE | X Address

> Flag bit x is used to indicate the indexed addressing mode.
5. Addressing mode: 2 Types
a) Direct Addressing Mode: Here flag bit x=0
Target Address= Actual Address
b) Indexed Addressing Mode: Here flag bit x=1
Target Address= Actual Address+Index Register (X) contents
i.e. Target Address= Address+(X)
6. Instruction Set:
a. Data Transfer Instruction: Include instructions that load and store register.
Eg: LDA, STA, LDX, STX

b. Arithmetic Operation Instruction: Arithmetic operations can be done
which involves register A

Eg: ADD, SUB, MUL, DIV, COMPR

c. Conditional Branching Instruction: The conditional jump instruction test the
setting of condition code and jumps.

Eg: JLT, JEQ, JGT

d. Subroutine Call Instruction: Two instructions are provided to perform
subroutine linkage

i) JSUB: To jump

i) RSUB: To return

e. Input and Output Instruction:
> 1/0O operations are executed by transferring a single byte each time.
> Target port is specified by last 8 bits of register A.

> Each device is assigned a unique 8 bit code to send and receive data
and control signals.

7. Input and Output:

> Performed by transferring 1 byte at a time to or from right most 8 bits of
register A (Accumulator).

> Test Device (TD) instruction tests whether the addressed device is ready
to send and receive a byte of data.

> Read Data (RD) and Write Data (WD) is used for reading and writing of
data.

8. Data Movement and Storage Definitions:
> LDA, STA, LDX, STX all uses 3 byte word.
» LDCH, STCH are associated with characters which uses 1 byte.
> Storage definitions are:
a. WORD- ONE WORD CONSTANT
b. RESW- ONE WORD VARIABLE
c. BYTE- ONE BYTE CONSTANT
d. RESB- ONE BYTE VARIABLE

SIC/XE ARCHITECTURE- SIC WITH EXTRA EQUIPMENT

e Architecture is similar to standard model with certain additional components
and features.

1. Memory: Maximum memory available on a SIC/XE system is IMB (22 bytes)

2. Registers: Additional B, S, T and F registers are provided by SIC/XE , in addition to
the registers of SIC.

Mnemonic Number Special use

B 3 Base register

S 4 General working register

T 5 General working register

F 6 Floating-point accumulator (48 bits)

3. Floating point Data type: There is a 48 bit floating point data type, F*2(-1024)

1 11 36
S | exponen fraction
t

4. Instruction format: New set of instruction formats for SIC/XE are as follows:

a. Format 1 (1 Byte): Contains only operation code

8
Format 1 (1 byte) op

Eg: RSUB (Return to Subroutine)

b. Format 2 (2 Bytes): First 8 bits for operation code, next four for register 1 and
following for register 2.

8 4 4
Format 2 (2 bytes) op r1 r2

Eg: COMPR A, S (Compare contents of register A and S)
c. Format 3 (3 Bytes) : Here e=0
> First 6 bits contain operation code.
> Next 6 bits contain flags.

> Last 12 bits contain displacement for the address of the operand.

> Flags are in order -n, i, X, b, p, e.
> e indicates instruction format.

> Bitsiand n are used for target address calculation

6 144 449 12
Format 3 (3 bytes) op nji|x|bjple disp

Eg: LDA #3 (Load 3 to Accumulator A)
Format 3 has many cases:

i. Ifi=0, n=1, word given by target address is fetched and value in word
Is taken as address of operand value- Indirect Addressing (Prefix #).

i. Ifi=1, n=0, target address is used as operand value.
Also called Immediate Addressing mode (Prefix #)
a) Case 1: Value contained location in word=operand value
Eg: ADD X, [500]
Here word in location 500 is fetched .

It gives address of first operand, second operand is given in indirect
addressing mode.

b) Case 2: Target Address= Operand
Value Eg:- If TA=10, Operand Value
=10

iii. 1fi=0, n=0 or i=1, n=1 target address is the location of operand.
Also called as Simple Addressing.

TA=location of operand
d. Format 4 (4 bytes): Here e=1

> It is same as format 3 with an extra 2 hex digits for address that
require more than 12 bits to be represented.

6 111111 20

Format 4 (4 bytes) op nli|x/bple address

5. Addressing mode and Flag bits:
a. Direct (x,b and p All set to 0):

> Operand address goes as it is.

> nand i are both set to the same value, either 0 or 1.

b. Relative (Either b or p equal to 1 and the other one to 0): Address of operand
should be added to the current value stored at the B register (if b=1) or to the

value stored at the PC register (if p=1)

c. Immediate (i=1,n=0): The operand value is already enclosed on the instruction.

d. Indirect (i=0, n=1): The operand value points to an address that holds the address

for operand value.

e. Indexed (x=1):

> Value to be added to the value stored at the register x to obtain real

address of operand.

> Can be combined with any of previous mode except

immediate. Indexing is not possible with immediate or indirect addressing

mode.
Two relative addressing modes are:

1) Base relative addressing mode.

i) Program counter relative addressing mode.

Mode Ind i«‘:@c}n
b=1
Base Relative Addressing Mode P=0
-0
Program Counter Relative Addressing Mode P =1
R 3) ."_.Iil’ 7||
fis - (Format 4 instruction
Direct Addressing Mode ‘
b=0.P=0
:f'n’llml 3 instruction)
Base Relative Indexed Addressing Mode b=1,P=0
X=1
| Program Counter Relative Indexed b=0.P=1
Addressing Mode
‘ X=1

| Displacement lies between 0 to 4095

| Target Address Calculation I
TA = Displacement + (B) ‘
B — Base Register
Displacement is 12 bit unsigned register

I'A = Displacement + (PC) g WJ
PC — program counter)
Displacement is 12 bit signed integer

| Displacement lies between — 2048 1o 2047

TA = address field of format 4 instruction

instruction

TA = Displacement field value of format 3“

{ B — Base register
{X — Index register
| Displacement is 12 bit unsigned register

__|Displacement lies between 0 to 4095

| TA = Displacement + (PC) + (X)
EP(' ~ program counter
X — Index Register
‘[)lspl;n‘cmcm is 12 bit signed integer.
| Displacement lies between — 2048 1o 2047

6. Instruction set;

a. Instruction that load and store new register

‘B’:LDB- Load the register ‘B’ with some
value. Eg: LDBx- Load value of x in to
register B.
b. STB- Store the register ‘B’ content in to some variable.
Eg: STBx- Store register ‘B’ content in to variable x.
ii. Instruction those perform floating point Arithmetic operation
a. ADDF
b. SUBF
c. MULF
d. DIVF
Here F is the floating point register

Eg: ADDF, here register’ B’ contents are added with Accumulator content
and result is left with accumulator.

iii. Instruction that take operand from
Register RMO-Register move
Eg: RMO S,B Register ‘S’ content is moved to ‘B’ register.
iv. Instruction which perform register arithmetic operation
a. ADDR
b. SUBR
c. MULTR
d. DIVR
Eg: ADDR S,B
add value of register B with register Sand store result in register B.
7. Input and Output:
» The SIC/XE supports all the 1/O instructions in the standard version.

» There are special 1/0 channels which are utilized for data transfer when CPU
is involved in another process at same time.

\4

Channels control associated I/0 channels.

> There can be maximum of 16 1/O channels each supporting maximum of 16
devices.RD and WD is used to read and write data from or to specified 1/0

devices.

’_SiO Instruction 1s used to Start an I/O Channel number
| TIO | Instruction is used to Test an 1/O Channel number
HIO | Instruction is used to Halt an I/0 Channel number

SIC vs SIC/XE
Baild' B gl ” SIC I T
| Registers Only 5 registers are used, which are A, X, L, | There are 9 registers are used, which are A, X, L, SW, “
| SWandPC |PCBTasdF. . . | SR
Floating Point Hardware | There is no floating point hardware. | Floating point hardwareisused. |
_ Instruction Format | Only one instruction format is used | There are four different types of instructions format
Addressing Modes There are two addressing modes There are many more addressingmodes. |

Also refer the pdf (Comparison SIC and SIC XE)
ASSEMBLER DIRECTIVES

e Pseudo instructions.

e Provide instruction to assembler itself

e They are not translated in to machine operation code.

e SIC and SIC/XE has following assemble directives:
START- Specify name and starting address of the
program

END- Indicate end of the source program and specify first executable statement in
program

BYTE- Generate character or hexadecimal constant.
WORD- Generate one word integer constant.
RESB- Reserves the indicated number of bytes for data area.

RESW- Reserve the indicated number of words for data area.

Data movement in SIC and SIC/XE

1. Data Movement in SIC

LDA EIGHT load constant 8 in to the register A

STA FIRST store in FIRST
LDCH CHARZ load character ‘Z’ in to register A
STCH C1 store in character variable C1
FIRST RESW 1 One word variable
EIGHT WORD 8 One word constant
CHARZ BYTE CL One byte constant
C1 RESB 1 One byte variable
Note, In SIC:
e RESB and RESW is used for variables
e BYTE and WORD is used for values
e RESB is used for variable for eg: C1
e RESW is used for variables represented using words For eg: FIRST, itisa
variable name represented in form of letter/ word. C can be another
example which uses the assembler directive RESW
e BYTE is used for character values/constants for eg: char Z
e WORD is used for values expressed in word form, for eg: EIGHT represents

value 8 in word form

2. Data Movement in SIC/XE

Here immediate addressing scheme is used.

FIRST
C1

Note, In SIX/XE:

LDA
STA
LDCH
STCH

RESW
RESB

#8
FIRST
#90

C1

load value 8 in to the register A
store in FIRST
load ASCI code of ‘Z’ in to register A

store in character variable C1

One word variable

One byte variable

e The values are represented with a prefix # and in numerical form , eg: #8

e Character values are represented using their ASCII values, eg: for Z we used

Arithmetic Operations in SIC and SIC/XE

its ASCII value 90

1. InSIC

FIRST
ONE
SECOND
THIRD
FOURTH
INCR

LDA FIRST
ADD INCR
SUB ONE

STA SECOND
LDA THIRD
ADD INCR
SUB ONE

STA FOURTH
RESW 1

WORD 1

RESW 1

RESW 1

RESW 1

RESW 1

load FIRST into register A
add value of INCR
subtract 1

store in SECOND

load THIRD into register A
add value of INCR
subtract 1

store in FOURTH

One word variable
One word variable
One word variable
One word variable
One word variable

One word variable

2. InSIC/XE

FIRST
SECOND
THIRD
FOURTH
INCR

Input/ Output Operations in SIC and SIC/XE

LDS
LDA
ADDR
SUB
STA
LDA
ADDR
SUB
STA

RESW
RESW
RESW
RESW
RESW

INCR
FIRST

S, A

#1
SECOND
THIRD
S, A

#1
FOURTH

= e e e e

load value of INCR in to the register S
load FIRST into register A

add value of INCR

subtract 1

store in SECOND

load THIRD into register A

add value of INCR

subtract 1

store in FOURTH

One word variable
One word variable
One word variable
One word variable

One word variable

INLOOP

OUTLP

INDEV

OUTDEV

DATA

2.

In SIC/XE

TD
JEQ

STCH

TD
JEQ
LDCH

BYTE
BYTE
RESB

INDEV
INLOOP
INDEV
DATA

OUTDEV
OUTLP
DATA
OUTDEV

X’F1°
X058’

test input device
loop until device is ready
read one byte into register A

store byte that was read

test output device
load until device is ready
load data byte into register A

write one byte to output device

input device number
output device number

one byte variable

INLOOP

OUTLP

INDEV
OUTDEV
DATA

TD
JEQ

STCH

TD
JEQ
LDCH
WD

BYTE
BYTE
RESB

INDEV
INLOOP
INDEV
DATA

OUTDEV
OUTLP
DATA
OUTDEV

X’F1°
X’08°

test input device
loop until device is ready
read one byte into register A

store byte that was read

test output device
load until device is ready
load data byte into register A

write one byte to output device

input device number
output device number

one byte variable

MODULE -2

ASSEMBLERS-1

2.1 Basic Assembler Functions:

Object

Source)
~ Code Linker

Program

Executable
Code

Loader

Figure 1

e Figure 2 shows SIC program which contains a main routine that reads records from an input device (F1) and
copies that to an output device (05) . This main routine calls subroutine RDREC to read a record into a buffer
and subroutine WRREC to write the record from the buffer to the output device. Each subroutine must transfer
one byte at a time. The end of each record is marked with a null character(hexa decimal 00). The end of the
file to be copied is indicated by a zero length record. When the end of the file is detected the program writes
EOF on the output device. And terminates by executing RSUB instruction and returns to the OS. Length of
the buffer is 4096 bytes.

Line Source statement

5 COPY START 1000 COFY FILE FROM INPUT TO OUTEUT
10 FIRST 2T EETATR SAVE RETIREM ADDRESS
15 CLOOE J5UE RDEEC READ INFUT REECORD
20 L& LENZTH TEST FOR EOF (LEMNGTH = (1)
25 COMP LERC
N JEQ ENDFIL, IT IF EOQOF FOUND
35 JEUB WERE WRITE OUTPUT EECORD
49 J CLOOP LOOP
a5 EMNDFIL LDn EOF INSERT END OF FILE MAREER
50 STA BUFFER
AR LCA THREE SET LEMGTH = 3
B0 STR LEMNGTH
65 JSUR WEREC WRTITE EOF
70 LIL RETADE GET RETURN ADDRESE
75 ESIIR RETURN TO CALLER
a0 ECI EYTE CrREORT
84 THEEE WORL 3
L] ZERD WCRD 0
45 EETALE RESW 1
10H) LENGTH RESH 1 LENGTH OF RECORD
105 EUFFER EESE 4096 4096-BYTE BIFFEE ARTA
T1m
110 .
115 . SUBRQUTINE TO REEAD RECORD INTC BUFFER
120 .
125 - ROREC LD¥ ZERO CLEAR LOQP COUNTER
130 LD& ZERD CLEAR A TO ZERO
135 RLOOP ™D INPUT TEST INPUT DEVICE
140 JEQ RLOOP LOOP UNTIL READY
145 RD INFPUT READ CHARACTER INTO REGISTER A
150 COMP ZERO TEST FOR END OF RECORD (X'00°)
155 JEQ EXIT EXIT LOOP IF EOR
160 STCH BUFFER, X STORE CHARACTER IN BUFFEE
165 TIX MAXTEN LOOP UNLESS MAX LEMNGTH
170 JLT RLOOP HAS BEEN REACHED
175 EXIT STX LENGTH SAVE RECORD LENGTH
180 RSB RETTEN TO CALLER
185 INPUT BYTE X'Fl° CCDE FORE INPUT DEVICE

190 MAXLEN WCRD 4096

1TnE

200
205
210
215
220
225
230
235
240
245
250
255

SUBROUTINE TO WRITE RECORD FROM BUFFER

WEREC LDX

WLOOP T
JEQ
LDCH
WD
TTX
JLT
RSUE

ouUTPUT BYTE
END

ZERO
OUTPUT
WLOOP
BUFFER, X
QUTPUT
LENGTH
WLOOP

X'os?
FIRST

CLEAR LOOP COUNTER

TEST OUTPUT DEVICE

LOOP UNTIL READY

GET CHARACTER FROM BUFFER

WRITE CHARACTER

LOCP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

REETURN TC CALLER

CODE FOR QUTPUT DEVICE

Figure 2.1 Example of a SIC assembler language program.

SIC Assembler Directive:

e In addition to the machine instructions assembler directives are also used in programs. Assembler
directives are pseudo instructions. They provide instructions to the assembler itself. They are not

translated into machine code.

START - Specify name and starting address for the program.
END - Indicate the end o the source program and(optionally) specify the first executable instruction in

the program.
BYTE — Generate character or hexadecimal constant , occupying as many bytes as needed to represent

the constant.

WORD- Generate one word integer constant.

RESB- Reserve the indicated number of bytes for a data area.
RESW- Reserve the indicated number of words for a data area.

A Simple SIC Assembler

e Figure 3 shows the same program as in figure 2 with the generated object code for each statement.

Line Loc Source statement Object code

& 1000 COPY START 1000
10 1000 FIRST STL RETADR 141033
15 1003 CLOOP JSUB RDRELC 482039
20 1006 LDA LENGTH {01036
25 1009 COMP ZERD 281030
a0 100¢ JED ENDFIL 301015
35 100F JSUB WRREC 432061

41 1012 J CLOOFP 301003
45 1015 ENDFIL TN ECF 001022
50 1018 S5Th EUFFER QC1035
55 101E LDA THREE 001020
60 101E STA LENGTH 0C10346

65 1021 JEUB WRREC 482061
70 1024 LDL RETALR 81033
75 1027 RSB AC0000
80 1028 ECF EYTE &' EOF! 454746

85 102D THEEE WORD 3 coonos

a0 1030 ZERO WORD { 200000
95 1033 RETADR. RESW 1
100 103¢ LENGTH RESW i
105 1039 EUFFER RESE 4086
110 .
115 . SUBROUTINE TO READ RECORD INTCO BUFFER
120 .
125 2039 RDEREC Lo ZEROD 041030
130 203C LD& ZERO 001030
135 203F RLOOP ™D INPUT E0205D
140 2042 - JEQ RLOOP 30203F
145 2045 RD INPUT DB205D
150 2048 CoMP ZERO 281030
155 2048 JE EXTIT 302057
160 204E STCH BUFFER, X 549035
165 2051 TIX MAXT.EN 2C205E
170 2054 JLT RLOOP 38203F
175 2057 EXTT STX LENGTH 101036
180 2054 RSUB 4C0000
185 205D INPUT BYTE H'Fl°’ Fl
150 205E MAKTEN WORD 4096 001000

195

200 . SUBROUTINE TO WRITE RECORD FEOM BUFFER
205 .
210 2061 WREEC LDX ZERQ 041030

215 2064 WLOOP TD QUTPUT E02079
220 2067 JEQ WLOOP 302064
225 2064 LDCH BUFFER, X 509039
230 206D WD OUTPUT DCc2079
235 2070 TIiX LENGTH 2C103¢6
240 2073 JLT WLOOP 382064
245 2076 RSUB 4C0000
250 2079 QUTPUT BYTE X'05 05

255 END FIRST

Figure 2.2 Program from Fig. 2.1 with object code.

The translation of source program to object code requires to accomplish the following basic
functions:

. Convert mnemonic operation codes to their machine language equivalents. Eg: translate STL to 14.
. Convert symbolic operands to their equivalent machine addresses. Eg: translate RETADR to 1033

Build the machine instructions in the proper format

. Convert the data constants specified in the source program into their internal machine
representations.- eg: translate EOF to 454F46

. Write the object program and assembly listing.

e All these functions except the second one can be easily accomplished by sequential processing of
the source program, one line at a time.

e Consider the following:

10 1000 FIRST STL RETADR 141033

95 1033 RETADR RESW 1

The instruction(line 10) contains a forward reference, that is a reference to a label that is defined later.

So can not process the statement . So most of the assemblers makes two passes. The first pass scans the

program for labels and assign addresses. The second pass performs the actual translation.

e The assembler must process assembler directives. They are not translated into machine language. But
they provide instructions to assembler itself.

e Finally the assembler must write the generated object code to some output device. The object program
will later be loaded into memory for execution.

Object Program format

e The simple object program contains three types of records: Header record, Text record and end
record.

e The header record contains the starting address and length. Text record contains the translated
instructions and data of the program, together with an indication of the addresses where these
are to be loaded. The end record marks the end of the object program and specifies the address

where the execution is to begin.
The format of each record is as given below.

Header record:

Col1 H

Col. 2-7 Program name

Col 8-13 Starting address of object program (hexadecimal)
Col 14-19 Length of object program in bytes (hexadecimal)

Text record:

Col. 1 T

Col 2-7. Starting address for object code in this record (hexadecimal)
Col 8-9 Length off object code in this record in bytes (hexadecimal)
Col 10-69 Object code, represented in hexadecimal (2 columns per byte

of object code)

End record:

Col. 1 E

Col 2-7 Address of first executable instruction in object program
(hexadecimal)

Figure 2.3 shows the object program corresponding to figure 2.2. The Asymbol

IS used to separate the fields.

HCOPY ADOIUDDAOOIO?A

I‘hOOLCIUOAlEA141033A482039’\001035‘\28l030A3010ISA&BZOBIASCIUU?}\OUIOZWCI039n00IOZD
T;\OOJ.OIE}\lSAOCl036“48206IAUB1033n4COOOOh-hSﬁFééAOOOOO3{\000000
ThUGZOSQAIEAOQIOSOAUO1030{\E0205DA30203FAI}8205DA281030’,\30205?“549039)\26205%\38203F
Thﬁi}Z[}S?:‘;\]:CAlOl[JSE:AhCUDUOnFIAO(JlD{]OAOﬁIOBUAEO20?9A302064A509039ADC2079A2C1036
3002073“07‘,\33206&!\%0000“05

EO0L1000

Figure 2.3 Object program corresponding to Fig. 2.2.

The assembler can be designed either as a single pass assembler or as a two pass assembler.

The general description of both passes is as given below:

» Pass 1 (define symbols)
— Assign addresses to all statements in the program
— Save the addresses assigned to all labels for use in Pass 2
— Perform some processing of assembler directives, including those for address
assignment, such as BYTE and RESW etc.
» Pass 2 (assemble instructions and generate object program)

Assemble instructions (generate opcode and look up addresses)
Generate data values defined by BYTE, WORD

— Perform processing of assembler directives not done during Pass 1

— Write the object program and the assembly listing

Assembler Algorithms and Data structure

The simple assembler uses two major internal data structures: the operation Code Table (OPTAB)
and the Symbol Table (SYMTAB).

OPTAB:

e It is used to lookup mnemonic operation codes and translates them to their machine language
equivalents. In more complex assemblers the table also contains information about instruction
format and length.

e Inpass 1the OPTAB is used to look up and validate the operation code in the source program.
In pass 2, it is used to translate the operation codes to machine language. In simple SIC machine
this process can be performed in either in pass 1 or in pass 2. But for machine like SIC/XE that
has instructions of different lengths, we must search OPTAB in the first pass to find the
instruction length for incrementing LOCCTR.

e In pass 2 we take the information from OPTAB to tell us which instruction format to use in
assembling the instruction, and any peculiarities of the object code instruction.

e OPTAB is usually organized as a hash table, with mnemonic operation code as the key. The
hash table organization is particularly appropriate, since it provides fast retrieval with a
minimum of searching. Most of the cases the OPTAB is a static table- that is, entries are not
normally added to or deleted from it. In such cases it is possible to design a special hashing
function or other data structure to give optimum performance for the particular set of keys being
stored.

SYMTAB:

e This table includes the name and value for each label in the source program, together with flags
to indicate the error conditions (e.g., if a symbol is defined in two different places).

e During Pass 1: labels are entered into the symbol table along with their assigned address value
as they are encountered. All the symbols address value should get resolved at the pass 1.

e During Pass 2: Symbols used as operands are looked up the symbol table to obtain the address
value to be inserted in the assembled instructions.

e SYMTARB is usually organized as a hash table for efficiency of insertion and retrieval. Since
entries are rarely deleted, efficiency of deletion is the important criteria for optimization.

e Both pass 1 and pass 2 require reading the source program. Apart from this an intermediate file
is created by pass 1 that contains each source statement together with its assigned address, error
indicators, etc. This file is one of the inputs to the pass 2.

LOCCTR:

e Apart from the SYMTAB and OPTAB, this is another important variable which helps in the
assignment of the addresses. LOCCTR is initialized to the beginning address mentioned in the
START statement of the program. After each statement is processed, the length of the assembled
instruction is added to the LOCCTR to make it point to the next instruction. Whenever a label

is encountered in an instruction the LOCCTR value gives the address to be associated with that
label.

The Algorithm for Pass 1:

e The algorithm scans the first statement START and saves the operand field (the
address) as the starting address of the program. Initializes the LOCCTR value to this
address. This line is written to the intermediate line.

e If no operand is mentioned the LOCCTR is initialized to zero. If a label is encountered,
the symbol has to be entered in the symbol table along with its associated address value.

e |f the symbol already exists that indicates an entry of the same symbol already exists.
So an error flag is set indicating a duplication of the symbol.

Pass 1:

begin
read first input line
if OPCODE = ‘'‘START’ then
begin
save #[OPERAND] as starting address
initialize LOCCTR to starting address
write line to intermediate file
read next input line
end {if START}
else
initialize LOCCTR to 0
while OPCODE # ‘END’ do

begin
if this is not a comment line then
begin
if there is a symbol in the LABEL field then
begin

search SYMTAB for LABEL
if found then
set error flag (duplicate symbol)
else
insert (LABEL,LOCCTR) into SYMTAB
end {if symbol}
search OPTAB for OPCODE
if found then
add 3 {instruction length} to LOCCTR
else if OPCODE = ‘WORD’ then
add 3 to LOCCTR
else if OPCODE = ‘RESW’ then
add 3 * #[OPERAND] to LOCCTR
else if OPCODE = ‘RESB’ then
add #[OPERAND] to LOCCTR

else if OPCODE = ‘BYTE’ then
begin
find length of constant in bytes
add length to LOCCTR
end {if BYTE}
else
set error flag (invalid operation code)
end {if not a comment}
write line to intermediate file
read next input line
end {while not END}
write last line to intermediate file
save (LOCCTR - starting address) as program length
end {Pass 1}

e It next checks for the mnemonic code, it searches for this code in the OPTAB. If found
then the length of the instruction is added to the LOCCTR to make it point to the next

instruction.

e If the opcode is the directive WORD it adds a value 3 to the LOCCTR. If it is RESW,
it needs to add the number of data word to the LOCCTR. If itis BYTE it adds the length

of the constant in bytes to the LOCCTR, if RESB it adds number of bytes.

e Ifitis END directive then it is the end of the program it finds the length of the program
by evaluating current LOCCTR - the starting address mentioned in the operand field

of the END directive. Each processed line is written to the intermediate file.

if object code will not fit
begin
write Text record to

The Algorithm for Pass 2: initiatise ney et 1
: end
Pass 2: add object code to Text rec
. end {if not comment}
begin ' _ . write listing line
read first input line {fror read next input line
if OPCODE = ‘START’ then end {while not END)
begin write last Text record to object program

write listing line
read next input line
end {if START}
write Header record to obj¢
initialize first Text reco:
while OPCODE # ‘END’ do
begin
if this is not a cor
begin
search OPTAB
if found then
begin
if there is a symbol
begin
search SYMTAB
if found then
store symb
else
begin
store (
set ert
end
end {if symbol}
else
store 0 as operan
assemble the object
end {if opcode found}
else if OPCODE = 'BYTE' or
convert constant to obje

write End record to object program
write last listing line
end {Pass 2}

Here the first input line is read from
the intermediate file. If the opcode is
START, then this line is directly
written to the list file.

A header record is written in the
object program which gives the
starting address and the length of the
program (which is calculated during
pass 1). Then the first text record is
initialized. Comment lines are
ignored. In the instruction, for the
opcode the OPTAB is searched to
find the object code.

If a symbol is there in the operand
field, the symbol table is searched to
get the address value for this which
gets attached to the object code of the
opcode. If the address not found then
zero value is stored as operands
address. An error flag is set
indicating it as undefined. If symbol
itself is not found then store O as
operand address and the object code
instruction is assembled.

If the opcode is BYTE or WORD,
then the constant value is converted

to its equivalent object code(for
example, for character EOF, its
equivalent hexadecimal value
‘454146’ is stored). If the object code
cannot fit into the current text record,
a new text record is created and the
rest of the instructions object code is
listed. The text records are written to
the object program. Once the whole
program is assemble and when the
END directive is encountered, the
End record is written.

Machine-Dependent Assembler
Features:

In this section we consider the design and
implementation of SIC/XE assembler.

e Instruction formats and addressing modes

e Program relocation.

Instruction formats and Addressing
Modes

1. Translation of Register to Register
instructions
In this the assembler must simply convert
the opcode to machine language and
change each register to its numeric value.
Eg:

COMPR A,S A004
(The opcode for COMPR is AO , the
number of register A is 0 and register S is
4.)

2. Translation of Format 4 instructions
This format contains 20 bit address field .
No displacement is calculated.

Eg:
CLOOP +JSUB RDREC

4B101036

Here the opcode for JSUB instruction is
48 and the address of RDREC is 1036. Write
the instruction format and set the bits n, i and
eto 1.
(If neither immediate nor indirect mode is
used set the bits n and i to 1. Format 4 is
identified by the prefix + . If format 4 is not
specified assembler first attempts to translate
the instruction using program counter relative
addressing. If this is not possible, (because the
required displacement is out of range), the
assembler then attempts to use base relative
addressing. If neither form of relative
addressing is applicable and the extended
format is not specified then the instruction can
not be properly assembled. In this case the
assembler must generate an error message.)

3. Translation PC relative instructions

In this format-3 instruction format is used. The
instruction contains the opcode followed by a 12-
bit displacement value. In PC relative addressing
made TA = disp + [PC]

disp = TA —[PC]
Eg:l

displacement= RETADR - PC = 30-3 = 20C

Eg: 2

displacement= CLOOP-PC=6 - 1A= -14

4. Translation of Base relative
instructions

In this format-3 instruction format is
used. The instruction contains the
opcode followed by a 12-bit
displacement value. In Base relative
addressing made TA =disp + [B]

*

disp = TA -[B]

The displacement calculation process

for base relative addressing is much the

same as for PC relative addressing. In

this the programmer must tell the
assembler what the base register will contain
during execution of the program so that
assembler can compute displacements. This is
done with the assembler directive BASE. For
example, the statement BASE LENGTH
informs the assembler that the base register
will contain the address of LENGTH. The
register B will contain this address until
another BASE statement is encountered.

If the base register has to be used for
another purpose the programmer must use
NOBASE directive to inform the
assembler that the contents of the base
register is not used for addressing.

(54) 111010 0036
displacement= BUFFER - B = |

Translation of Immediate addressing
In this no memory reference is involved.
Convert the immediate operand into its
internal representation and insert it into
its internal representation.

Eg:

6.

Translation involving indirect
addressing
In this the displacement is computed to

produce the target address.. Then bit n is

set to 1. The example given below is
indirect and PC relative.

Eg:

TA=RETADR=0030

TA=(PC)+disp=002D+0003

Program Relocation

Sometimes it is required to load and
run several programs at the same
time. The system must be able to load
these programs wherever there is
place in the memory. Therefore the
exact starting is not known until the

load time.

Absolute Program- In this the

address is mentioned during
assembling itself. This is called

Absolute Assembly.

Eg: Consider the instruction:

101B LDA

102D

e This statement says that the register

0000
0006
1026*

1076

A is loaded with the value stored at
location 102D. Suppose it is decided
to load and execute the program at
location 2000 instead of location
1000.

Then at address 102D the required
value which needs to be loaded in the
register A is no more available. The
address also gets changed relative to
the displacement of the program.

Hence we need to make some changes in

the address portion of the instruction so

THREE

00

48101036

B410

(+JSUB RDREC)

<« — RDREC

5000
5006
6036«

6076

that we can load and execute the

program at location 2000.

Apart from the instruction which will
undergo a change in their operand
address value as the program load
address changes. There exist some
parts in the program which will
remain same regardless of where the
program is being loaded.

Since assembler will not know actual

4B106036 | (+JSUB RDREC)

B410 +— RDREC

7420

7426 | 4B108456

8456" | B410

8496

(+JSUB RDREC)

le—— RDREC

location where the program will get
loaded, it cannot make the necessary
changes in the addresses used in the
program. However, the assembler
identifies for the loader those parts of
the program which need
modification.

An object program that has the
information necessary to perform this
kind of modification is called the

relocatable program.

The above diagram shows the
concept of relocation. Initially the
program is loaded at location 0000.
The instruction JSUB is loaded at
location 0006.

The address field of this instruction
contains 01036, which is the address
of the instruction labeled RDREC.
The second figure shows that if the
program is to be loaded at new
location 5000.

The address of the instruction JSUB
gets modified to new location 6036.
Likewise the third figure shows that
if the program is relocated at location
7420, the JSUB instruction would
need to be changed to 4B108456 that
correspond to the new address of
RDREC.

The only part of the program that
require modification at load time are
those that specify direct
addresses(format 4 instructions). The
rest of the instructions need not be
modified. The instructions which
doesn’t require modification are the
ones that is not a memory address
(immediate addressing) and PC-
relative, Base-relative instructions.

For an address label, its address is

assigned relative to the start of the
program (START 0). The assembler
produces a Modification record to
store the starting location and the
length of the address field to be
modified. The command for the
loader must also be a part of the
object program. The Modification
has the following format:
Modification record

Col. 1 M
Col. 2-7 Starting

location of the

address field to

be modified,

relative to the

beginning of

the program

(Hex)

Col. 8-9 Length of the address

field to be modified, in half-bytes (Hex)

One modification record is created
for each address to be modified The
length is stored in half-bytes (4 bits)
The starting location is the location

of the byte containing the leftmost

bits of the address field to be
modified. If the field contains an
odd number of half-bytes, the
starting location begins in the
middle of the first byte.
Eg: Consider the instruction
CLOOP +JSUB RDREC
4B101036
where RDREC is at the address 1036.
The modification record for this
instruction can be written as
M00000705
e There is one modification record for
each address field that needs to be
changed when the program is Module-3
relocated(ie. For each format 4

instructions in the program).

Machine-Dependent Assembler Features:

In this section we consider the design and implementation of SIC/XE assembler.

e Instruction formats and addressing modes

e Program relocation.

Instruction formats and Addressing Modes

1. Translation of Register to Register instructions
In this the assembler must simply convert the opcode to machine language and change each register
to its numeric value.
Eg:
COMPR A,S A004
(The opcode for COMPR is A0, the number of register A is 0 and register S is 4.)
2. Translation of Format 4 instructions
This format contains 20 bit address field . No displacement is calculated.
Eg:
CLOOP +JSUB RDREC 4B101036

Here the opcode for JSUB instruction is 48 and the address of RDREC is 1036. Write the instruction
format and set the bits n, i and e to 1.
(If neither immediate nor indirect mode is used set the bits n and i to 1. Format 4 is identified by the
prefix + . If format 4 is not specified assembler first attempts to translate the instruction using program
counter relative addressing. If this is not possible, (because the required displacement is out of range),
the assembler then attempts to use base relative addressing. If neither form of relative addressing is
applicable and the extended format is not specified then the instruction can not be properly assembled.
In this case the assembler must generate an error message.)

3. Translation PC relative instructions

In this format-3 instruction format is used. The instruction contains the opcode followed by a 12-bit displacement
value. In PC relative addressing made TA = disp + [PC]

disp = TA —[PC]
Eg:l

displacement= RETADR - PC = 30-3 = 2D

Eg: 2

displacement= CLOOP-PC=6 - 1A= -14= FEC

4. Translation of Base relative instructions
In this format-3 instruction format is used. The instruction contains the opcode followed by a 12-bit
displacement value. In Base relative addressing made TA = disp + [B]

disp = TA —[B]

The displacement calculation process for base relative addressing is much the same as for PC relative
addressing. In this the programmer must tell the assembler what the base register will contain during execution
of the program so that assembler can compute displacements. This is done with the assembler directive BASE.
For example, the statement BASE LENGTH informs the assembler that the base register will contain the
address of LENGTH. The register B will contain this address until another BASE statement is encountered.
If the base register has to be used for another purpose the programmer must use NOBASE directive
to inform the assembler that the contents of the base register is not used for addressing.

(54) 111010 0036-1051= -101B
displacement= BUFFER - B = 0036 - 0033 = 3

5. Translation of Immediate addressing
In this no memory reference is involved. Convert the immediate operand into its internal
representation and insert it into its internal representation.
Eg:

6. Translation involving indirect addressing

In this the displacement is computed to produce the target address.. Then bit nis set to 1. The
example given below is indirect and PC relative.

Eg:

TA=RETADR=0030
TA=(PC)+disp=002D+0003

Program Relocation

e Sometimes it is required to load and run several programs at the same time. The system must
be able to load these programs wherever there is place in the memory. Therefore the exact
starting is not known until the load time.

Absolute Program- In this the address is mentioned during assembling itself. This is called

Absolute Assembly.

Eg: Consider the instruction:
101B LDA THREE 00102D

This statement says that the register A is loaded with the value stored at location 102D. Suppose
it is decided to load and execute the program at location 2000 instead of location 1000.

Then at address 102D the required value which needs to be loaded in the register A is no more
available. The address also gets changed relative to the displacement of the program. Hence we
need to make some changes in the address portion of the instruction so that we can load and execute the
program at location 2000.

Apart from the instruction which will undergo a change in their operand address value as the
program load address changes. There exist some parts in the program which will remain same
regardless of where the program is being loaded.

Since assembler will not know actual location where the program will get loaded, it cannot make
the necessary changes in the addresses used in the program. However, the assembler identifies
for the loader those parts of the program which need modification.

An object program that has the information necessary to perform this kind of modification is

called the relocatable program.

0000
0006
1026*

1076

48101036

B410

(+JSUB RDREC)

<« — RDREC

5000
5006
6036«

6076

4B106036

B410

(+JSUB RDREC)

+— RDREC

7420
7426
8456"

8496

4B108458

B410

(+JSUB RDREC)

le—— RDREC

The above diagram shows the concept of relocation. Initially the program is loaded at location
0000. The instruction JSUB is loaded at location 0006.

The address field of this instruction contains 01036, which is the address of the instruction
labeled RDREC. The second figure shows that if the program is to be loaded at new location
5000.

The address of the instruction JSUB gets modified to new location 6036. Likewise the third
figure shows that if the program is relocated at location 7420, the JSUB instruction would need
to be changed to 4B108456 that correspond to the new address of RDREC.

The only part of the program that require modification at load time are those that specify direct
addresses(format 4 instructions). The rest of the instructions need not be modified. The
instructions which doesn’t require modification are the ones that is not a memory address
(immediate addressing) and PC-relative, Base-relative instructions.

For an address label, its address is assigned relative to the start of the program (START 0). The
assembler produces a Modification record to store the starting location and the length of the
address field to be modified. The command for the loader must also be a part of the object
program. The Modification has the following format:

Modification record
Col. 1 M
Col. 2-7 Starting location of the address field to be modified, relative to the
beginning of the program (Hex)
Col. 8-9 Length of the address field to be modified, in half-bytes (Hex)

One modification record is created for each address to be modified The length is stored in half-
bytes (4 bits) The starting location is the location of the byte containing the leftmost bits of the
address field to be modified. If the field contains an odd number of half-bytes, the starting
location begins in the middle of the first byte.

Eg: Consider the instruction
CLOOP +JSUB RDREC 4B101036

where RDREC is at the address 1036. The modification record for this instruction can be written

as
M00000705
e There is one modification record for each address field that needs to be changed when the

program is relocated(ie. For each format 4 instructions in the program).

Machine-Independent features:

These are the features which do not depend on the architecture of the machine. Such features are more
related to software than to machine architecture. These are:

= Literals
= Symbol defining statements

= Expressions
= Program blocks

= Control sections

Literals:

e It is easy for a programmer to write the value of a constant operand as part of the instruction that

uses it.

e This avoids defining the constant elsewhere in the program and making a label for it. Such an
operand is called a literal because the value is stated literally in the instruction.

e A literal is defined with a prefix = followed by a specification of the literal value.

Example:

001A ENDFIL LDA =CEOF’ 032010

The example above shows a 3-byte operand whose value is a character string EOF. The object
code for the instruction is also mentioned. It shows the relative displacement value of the
location where this value is stored. In the example the value is at location (002D) and hence the
displacement value is (010). As another example the given statement below shows a 1-byte

literal with the hexadecimal value ‘05°.

215 1062 WLOOP D =X"0% E32011

The difference between a constant defined as a literal and a constant defined as an
immediate operand- In case of literals the assembler generates the specified value as a constant
at some other memory location. In immediate mode the operand value is assembled as part of

the instruction itself. Example
0020 LDA #03 010003

All the literal operands used in a program are gathered together into one or more literal pools.
This is usually placed at the end of the program. The assembly listing of a program containing
literals usually includes a listing of this literal pool, which shows the assigned addresses and the
generated data values.
Eg: 1076 * =X'05 05
In some cases it is placed at some other location in the object program. An assembler directive
LTORG is used. Whenever the LTORG is encountered, it creates a literal pool that contains all
the literal operands used since the beginning of the program. The literal pool definition is done
after LTORG is encountered. It is better to place the literals close to the instructions.

LTORG

002D * =C’EOF’ 454F46
Recognizing Duplicate literals — That is the same literal used in more than one place in a program

and store only one copy of the data value. For example, the literal =X’05" is used in different
instructions in a program, but only one data area with this value is created.

— Duplicate literals can be identified by comparing character strings. Eg: X’05’

— Otherwise, generated value can be compared. For eg: the literals =C’EOF’ and

=X’454F46’ are identical operand values.

The value of some literals depends on their location in the program. Literals referring to the current
value of the location counter (denoted by the symbol *) . Such literals are useful for loading base
registers.
Eg: BASE *

LDB *
Such literal operands will have different values in different places of the program since they hold the
current value of the locaton counter.

Handling of literals by the assembler - A literal table is created for the literals which are used in

the program. The literal table contains the literal name, operand value and length and the address

assigned to the operand. The literal table is usually created as a hash table using the literal name or

value as the key.

— During Pass-1:The literal encountered is searched in the literal table. If the literal already exists,
no action is taken; if it is not present, the literal is added to the LITTAB (leaving the address
unassigned. When Pass 1 encounters a LTORG statement or the end of the program, the
assembler makes a scan of the literal table. At this time each literal currently in the table is
assigned an address. As addresses are assigned, the location counter is updated to reflect the
number of bytes occupied by each literal.

— During Pass-2:The assembler searches the LITTAB for each literal encountered in the

instruction and replaces it with its equivalent value.

Symbol-Defining Statements:

EQU Statement:

Most assemblers provide an assembler directive that allows the programmer to define symbols
and specify their values. The directive used for this EQU (Equate). The general form of the

statement is
Symbol EQU value

This statement defines the given symbol (i.e., entering in the SYMTAB) and assigning to it the
value specified. The value can be a constant or an expression involving constants. One common
usage is to define symbolic names that can be used to improve readability in place of numeric
values. For example , instead of +LDT #4096 we can write

MAXLEN EQU 4096

+LDT #MAXLEN

When the assembler encounters EQU statement, it enters the symbol MAXLEN along with its
value in the symbol table. During the assembly of LDT instruction the assembler searches the
SYMTAB for its entry and its equivalent value as the operand in the instruction. The object
code generated is the same for both the options discussed, but is easier to understand. If the
maximum length is changed from 4096 to 1024, it is difficult to change if it is mentioned as an
immediate value wherever required in the instructions. We have to scan the whole program and
make changes wherever 4096 is used. If we mention this value in the instruction through the
symbol defined by EQU, we may not have to search the whole program but change only the
value of MAXLENGTH in the EQU statement (only once).

Another common usage of EQU statement is for defining values for the general- purpose
registers. The assembler can use the mnemonics for register usage like a-register A, X —index
register and so on. But there are some instructions which requires numbers in place of names in
the instructions. For example in the instruction RMO 0,1 instead of RMO A, X. The programmer

can assign the numerical values to these registers using EQU directive.
A EQU 0
X EQU 1 and so on

These statements will cause the symbols A, X, L... to be entered into the symbol table
with their respective values. An instruction RMO A, X would then be allowed. As another
usage if in a machine that has many general purpose registers named as R1, R2,..., some may
be used as base register, some may be used as accumulator. Their usage may change from one

program to another. In this case we can define these requirement using EQU statements.

BASE EQU R1

INDEX EQU R2
COUNT EQU R3

e One restriction with the usage of EQU is whatever symbol occurs in the right hand side of the

EQU should be predefined. For example, the following statement is not valid:
BETA EQU ALPHA
ALPHA RESW 1

As the symbol ALPHA is assigned to BETA before it is defined. The value of ALPHA is not known.

ORG Statement:

e Thisdirective can be used to indirectly assign values to the symbols. This assembler directive changes
the value in the location counter. The directive is usually called ORG (for origin). Its general format

is:
ORG value

Where value is a constant or an expression involving constants and previously defined symbols.
When this statement is encountered during assembly of a program, the assembler resets its
location counter (LOCCTR) to the specified value. Since the values of symbols used as labels
are taken from LOCCTR, the ORG statement will affect the values of all labels defined until
the next ORG is encountered. ORG is used to control assignment storage in the object program.
e ORG can be useful in label definition. Suppose we need to define a symbol table with the

following structure:
SYMBOL 6 Bytes
VALUE 3 Bytes
FLAG 2 Bytes

The table looks like the one given below.

SYMBOL VALUE FLAGS

STAB

(100 entries)

o T

e The symbol field contains a 6-byte user-defined symbol; VALUE is a one-word representation
of the value assigned to the symbol; FLAG is a 2-byte field specifies symbol type and other
information. The space for the ttable can be reserved by the statement:

STAB RESB 1100

If we want to refer to the entries of the table using indexed addressing, place the offset
value of the desired entry from the beginning of the table in the index register. To refer to the
fields SYMBOL, VALUE, and FLAGS individually, we need to assign the values first as

shown below:
SYMBOL EQU STAB
VALUE EQU STAB+6
FLAGS EQU STAB+9

To retrieve the VALUE field from the table indicated by register X, we can write a statement:
LDA VALUE, X

The same thing can also be done using ORG statement in the following way:

STAB RESB

ORG

SYMBOL RESB

VALUE RESW

FLAG RESB

ORG

1100

STAB

STAB+11
00

The first statement allocates 1100 bytes of memory assigned to label STAB. In the

second statement the ORG statement initializes the location counter to the value of STAB.

Now the LOCCTR points to STAB. The next three lines assign appropriate memory storage to
each of SYMBOL, VALUE and FLAG symbols. The last ORG statement reinitializes the
LOCCTR to a new value after skipping the required number of memory for the table STAB

(i.e., STAB+1100).

e While using ORG, the symbol occurring in the statement should be predefined as is required in

EQU statement. For example for the sequence of statements below:

ORG

BYTE1 RE
SB

BYTE2 RE
SB

BYTES RE
SB

ORG

ALPHA RE
SB

ALPH
A

1

The sequence could not be processed as the symbol used to assign the new location

counter value is not defined. In first pass, as the assembler would not know what value to

assign to ALPHA, the other symbol in the next lines also could not be defined in the symbol

table. This is a kind of problem of the forward reference.

EXxpressions:

Assemblers also allow use of expressions in place of operands in the instruction. Each such
expression must be evaluated to generate a single operand value or address. Assemblers
generally arithmetic expressions formed according to the normal rules using arithmetic
operators +, - *, /. Division is usually defined to produce an integer result.

Individual terms may be constants, user-defined symbols, or special terms. The only special
term used is * (the current value of location counter) which indicates the value of the next

unassigned memory location. Thus the statement
BUFFEND EQU *

Assigns a value to BUFFEND, which is the address of the next byte following the
buffer area. Some values in the object program are relative to the beginning of the program
and some are absolute (independent of the program location, like constants).

Expressions are classified as either absolute expression or relative expressions , neither absolute
nor relative depending on the type of value they produce.

— Absolute Expressions: The expression that uses only absolute terms is absolute expression.
Absolute expression may contain relative term provided the relative terms occur in pairs
with opposite signs for each pair. None of the relative terms enter into multiplication or

division. Example:
MAXLEN EQU BUFEND-BUFFER

In the above instruction the difference in the expression gives a value that does not
depend on the location of the program and hence gives an absolute value irrespective of the
relocation of the program. The expression can have only absolute terms. Example:

MAXLEN EQU 1000

— Relative Expressions: All the relative terms except one can be paired . The remaining
unpaired relative term must have a positive sign. None of the relative terms must enter into
multiplication or division. A relative term represents some location within the program.
Example:

STAB EQU OPTAB + (BUFEND - BUFFER)

— Neither absolute nor relative: Expressions that are legal are those expressions whose value
remains meaningful when the program is relocated. Expressions that do not meet the conditions for

either absolute or relative are neither absolute nor relative. They are considered as errors.

Eg: BUFEND + BUFFER, 100-BUFFER, 3*BUFFER

Handling the type of expressions: to find the type of expression, we must keep track the type
of symbols used. This can be achieved by defining the type in the symbol table against each

of the symbol as shown in the table below:

Swmbo Type YValue
RETADR R 0030
BUFFER R 0035
EUFERND R 1038
MAXLEM A 1000

Program Blocks:

Program blocks allow the generated machine instructions and data to appear in the object
program in a different order by Separating blocks for storing code, data, stack, and larger data
block.

Program blocks refer to segments of code that are rearranged within a single object program

unit.
Assembler Directive USE: indicates which portion of the program belong to the various blocks.
USE [blockname]

At the beginning, statements are assumed to be part of the unnamed (default) block. If no USE
statements are included, the entire program belongs to this single block. Each program block
may actually contain several separate segments of the source program. Assemblers rearrange
these segments to gather together the pieces of each block and assign address. Separate the
program into blocks in a particular order.Large buffer area is moved to the end of the object

program. Program readability is betterif data areas are placed in the source program close to

the statements that reference them. In the example below three blocks are used :

Default: executable instructions

CDATA: all data areas that are less in length

CBLKS: all data areas that consists of larger blocks of memory

Example Code

172063
482021
032060
200000
332006
4B203B
3F2FEE
032055
0F2056
010003
0F2048
482029
3E203F

CDATA block

CBLKS block

BUFEND-BUFFER

B410
B400
B440
75101000
E32038
332FFA
DB2032
ADD4
332008
S7TAD2ZF
B850
3B2FEA
13201F
4F0000

CDATA < CDATA block

(default) block _~ Block number
- {0000 0* COPY START 0
0000 0 FIRST STL RETADR
0003 0 CLOOP JSUB RDREC
0006 0 LDA LENGTH
0009 1] COMP &0
oooc 0 JEQ ENDFIL
00oF 0 JSUB WRREC
0012 0 J CLOOP
0015 0 ENDFIL LDA =CEQOF
0018 0 STA BUFFER
0o1B 0 LDA #3
001E 0 STA LENGTH
0021 0 JSUB WRREC
0024 0 J @RETADR
10000 ! 1 USE CDATA 4
3 aooo- 1 RETADR RESW 1
0003 1 LENGTH RESW 1
10000 2 USE CBLKS =«
0000 2 BUFFER RESE 096
1000 2 BUFEND EQU *
1000 MAXLEN EQU
PR (default) block
10027 ! 0 RDREC USE
o027y 0 CLEAR X
0029 0 CLEAR A
002B 0 CLEAR 5
oozD 0 +LDT HMAXLEN
0031 0 RLOOFP TD INPUT
0034 0 JEQ RLOOF
0037 0 RD INFUT
003A 0 COMPR AS
0oac 0 JEQ EXIT
003F 0 STCH BUFFER,X
0042 0 TIXR T
0044 0 JLT RLOOCF
o047 0 EXIT STX LENGTH
Q04A, 0 RSUB
10006 | 1 USE
0006 1 INFUT BYTE XFET

F1

(default) block

1 004D; 0 USE
004D 0 WRREC CLEAR X B410
004F 0 LDT LENGTH 772017
0052 0 WLOOP TD =X'05 F3201B
0055 0 JEQ WLOOP 332FFA
0058 0 LDCH BUFFER, X 53A016
005B 0 WD =X'05 DF2012
005E 0 TIXR T BA50
0060 0 JLT WLOOP 3B2FEF
0063 0 RSUB 4F0000
: 0007, 1 —SE CDATA = CDATA block
LTORG
0007 1 " =C'EOF A5AF46
00DA 1 . =X'05’ 05
END FIRST

e How the assembler handles program blocks —
Pass 1

— A separate location counter for each block is maintained.

— The location counter for a block is initialized to zero when the block is first started.

— The current value of the location counter is saved when switching to another block.

— The saved value is continued when resuming previous block.

— After pass 1 the symbol table will be having labels with block no along with address.(For
absolute symbol there is no block number.)

— Atthe end of pass 1 latest value of location counter or each block gives the length of that block.

— Assembler constructs a block table that contains starting addresses and lengths of all blocks

Block name Block number Address Length

(default) 0 " 0000 0066
CDATA 1 0066 000B
CBLKS 2 0071 1000

Pass 2

— Code generation during pass2 the assembler needs the address relative to the start of the

program. (not the start of the individual program block). Assembler adds the label address with

its block starting address.

Passl algorithm of Program blocks

Pass2 algorithm for program blocks

e Advantage- Separation of programs into blocks has reduced the addressing problem. Since the larger
buffer are is moved to the end of the object program extended format instructions need not be used.
The use of program blocks has achieved the effect of rearranging the source statements without

actually rearranging them. The loader will load the object program at the indicated address.

pmmmmmmmmmmmmmmmmmmmm

Program loaded

prog ObJect program In mamo
Saurce ram | prog i Relativa
-ine address
] Q000
e] FESRSSR SRR S R
/ Default(l) |j—— Default{1})
Default(1) 0027
Default(?) p——————-—pi{ Detfauii(2)
70
a5 004D
CDATA(Z2
CDATA(1) p__._() Default(3)
100
Defait{3)
::5 CBLKS(1) COATA(T) 0066
=] 006C
CDATA(3) \ CDATA(2)
Q060D
Default(2) CDATA@E) |
0071
180
185| CDATA(2)
210
CBLKS(1)
Default(3)
245
253| CDATA(3)
1070

Fig:Program blocks traced through the assembly and loading processes

Pass1 of program blocks

begin £
block number = § LOCM'R[]{] = 0 for all i

read the firat input Jlne
if OPCODE = 'START' then

begin ‘
write line to intermediate file
read next input 1{ne

end {if START)
while OPCODE # '"END' do
1f OPCODE = 'USEw
begin |
if there is no OPEREND name then
set block name ag default ¢
else block name as OPERAND name
if there is no entry for block name- then
insert (block name, block number ++) in block table
i = block number for block name
if this is not 4 comment line then
begin
if there is a symbol in the LABEL field then
begin
search SYMTAB for LAREtL,
if found then
set error flag (duplicate symbol)
else
insert (LABEL, ‘LoCCTRYi]) into SymTag
end (if symbol }
Search OPTAB for OPCODE
if found then
add 3 instruction length to LOCCTR [1]
else if OPCODE = '"WORD' then
add 3 to LOCCTR [1)
else if OPCODE = 'RESW' then
add 3 « # [OPERAND] to LOCCTR [1)
else if OPCODE =« 'RESB' then
add # [OPERAND] to LOCCTR (1]
else if OPCODE = 'BYTE' then
begin
find length of constant in bytes
add length to LOCCTR([i)
end (if byte}
else

v

Set ©
end

N
write

rror flag
if not a comment}
ine to intermediate file
read Text input line
end {while not END}
write last line to intermediate file
save Length(i] as LOCCTR[1i] for all i
] = starting address
] = address(i - 1) + Length(i - 1)
[for 1 = 1 to max(block number)]
ss[i], Length[i]) in block table for all i

Pt oy

=3

r

{&
3
b

Pass2 of Program blocks

If OPCODE = 'USE' then
lock number for block name with OPERAND field
search SYMTAB for OPERAND
store svmbol value + address [(block number] as operand address
end {Pass 2}

Control Sections:

A control section is a part of the program that maintains its identity after assembly; each control
section can be loaded and relocated independently of the others.

Different control sections are most often used for subroutines or other logical subdivisions. The
programmer can assemble, load, and manipulate each of these control sections separately.
Because of this, there should be some means for linking control sections together. For example,
instructions in one control section may refer to the data or instructions of other control sections.
Since control sections are independently loaded and relocated, the assembler is unable to
process these references in the usual way. Such references between different control sections
are called external references.

The assembler generates the information about each of the external references that will allow
the loader to perform the required linking.

When a program is written using multiple control sections, the beginning of each of the control

section is indicated by an assembler directive
— assembler directive: CSECT
The syntax
controlsectionname CSECT

— separate location counter for each control section

e Control sections differ from program blocks in that they are handled separately by the
assembler. Symbols that are defined in one control section may not be used directly another
control section; they must be identified as external reference for the loader to handle. The

external references are indicated by two assembler directives:

— EXTDEF (external Definition): It is the statement in a control section, names symbols that are

defined in this section but may be used by other control sections. Control section names do
not need to be named in the EXTREF as they are automatically considered as external symbols.

EXTREF (external Reference): It names symbols that are used in this section but are defined
in some other control section. The order in which these symbols are listed is not significant.

The assembler must include proper information about the external references in the object

program that will cause the loader to insert the proper value where they are required.

~Implicitly defined as an external symbol

___ first control section

&
CcopY START4 0
EXTDEF BUFFER,BUFEND,LENGTH
EXTREF RDREC,WRREC
FIRST STL RETADR
CLOOP [+suB RDREC
LDA LENGTH
COMP #0
JEQ ENDFIL
[+hsuB WRREC
] CLOOP
ENDFIL LDA =C'EOF'
STA BUFFER
LDA #3
STA LENGTH
[+hsuB WRREC
] @RETADR
RETADR RESW 1
LENGTH RESW 1
LTORG
BUFFER RESB 4096
BUFEND EQU ®
MAXLEN EQU BUFFEND-BUFFER
Implicitly defined as an external symbol
sl csect . second control section
SUBROUTINE TO READ RECORD INTO BUFFER
[EXTREF _ BUFFER,LENGTH,BUFFEND |
CLEAR X
CLEAR A
CLEAR S
LDT MAXLEN
RLOOP D INPUT
JEQ RLOOP
RD INPUT
COMPR AS
JEQ EXIT
+STCH _BUFFER,X
TIXR E
T RLOOP
EXIT +STX LENGTH
RSUB
INPUT BYTE XF1’
MAXLEN WORD BUFFEND-BUFFER

COPY FILE FROM INPUT TO OUTPUT

SAVE RETURN ADDRESS
READ INPUT RECORD
TEST FOR EOF (LENGTH=0)

EXIT IF EOF FOUND

WRITE OUTPUT RECORD
LOOP

INSERT END OF FILE MARKER

SET LENGTH = 3

WRITE EOF
RETURN TO CALLER

LENGTH OF RECORD

4096-BYTE BUFFER AREA

CLEAR LOOP COUNTER
CLEAR A TO ZERO
CLEAR S TO ZERO

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REGISTER A

TEST FOR END OF RECORD (X'00%)

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAX LENGTH HAS
BEEN REACHED

SAVE RECORD LENGTH

RETURN TO CALLER

CODE FOR INPUT DEVICE

Implicitly defined as an external symbol
X _— third control section
WRREC CSECT &

SUBROUTINE TO WRITE RECORD FROM BUFFER

EXTREF LENGTH,BUFFER |

CLEAR X CLEAR LOOP COUNTER

+LDT LENGTH

WLOOP L =X'05" TEST OUTPUT DEVICE

JEQ WLOOP LOOP UNTIL READY

+LDCH _BUFFER X GET CHARACTER FROM BUFFER
WD =X'05" WRITE CHARACTER
TIXR T LOOP UNTIL ALL CHARACTERS HAVE
T WLOOP BEEN WRITTEN
RSUB RETURN TO CALLER
END FIRST

Handling External

Reference Case 1

15 0003 CLOOP +JSUB RDREC 4B100000

e The operand RDREC is an external reference.
o The assembler has no idea where RDREC is
o inserts an address of zero
o can only use extended formatto provide enough room (that is, relative
addressing for external reference is invalid)

e The assembler generates information for each external reference that will allow the
loaderto perform the required linking.
Case 2

On line 107, BUFEND and BUFFER are defined in the same control section and the

expression can be calculated immediately.

107 1000 MAXLEN EQU BUFEND-BUFFER

Case 3

(000

D000
D003
D007
OO0A
DOOD
0010
0014
0017
001A
001D
0020
0023
D0ZT
D02 A
002D

D030
033
1033
1000

190

0028 MAXLEN

WORD

BUFEND-BUFFER

000000

e There are two external references in the expression, BUFEND and BUFFER.

e The assembler inserts a value of zero

e passes information to the loader

e Add to this data area the address of BUFEND
e Subtract from this data area the address of BUFFER

Object Code for the example program:

COpPY

FIRST
CLOOP

ENDFIL

RETADR
LENGTH

BUFFER
BUFENL»
MAXLEM

START

EXTDEF
EXTREF

STL
+JSUB
LDA
COMP
JEQ
+J5UB
]
LDA
STA
LDA
STA
+ISUB
]
RHESW
RESW
LTORG
=C'EOF’
RESB
EQU
EQU

L

BUFFER,BUFFENDLLENGTH

RODREC,WRREC
RETADR
ROREC
LENGTH
i)
ENDFIL
WRREC
CLOOP
=C'EOF
BUFFER
#3
LENGTH
WRREC
@RETADR
1
1

4096
*

BUFEND-BUFFER

172027
4B 100MI0
032023
290000
332007
48100000
3FZFEC
n3ziole
0F2016
010003
OF2004
AB100000
FE2000)

454F46

e 2,

Case 1

OO RDREC ICSECT
3 SUBROUTINE TO READ RECORD INTO BUFFER

EXTREF BUFFER,LENGTH,BUFEND

0000 CLEAR X B410
02 CLEAR A B4
0004 CLEAR S B
000G LDT MAXLEN 77201F
DIMNIS RLOOP TD INPLT E3201B
0onc JEQ RLOOP 332FFA
OO0F RD INPUT DB2015
0012 COMPR AS Al
0014 JEQ EXIT 332009
0017 +STCH BUFFER, X [57900000 |
0nig TIXR T BRSO
0010 T RLOOP 3B2FE9
0020 EXIT +5TX LENGTH 13100000 |
0024 RSUB AFO00
nnz7y INPUT BYTE XF1' Fl
0n0zs MAXLEN WORD BUFFEND-BUFFER | OOO000 _':35&3

0000 WRREC CSECT

SUBROUTINE TO WRITE RECORD FROM BUFFER

EXTREF LENGTH,BUFFER

0000 CLEAR X B410
0002 +LDT LENGTH 77100000 |
0006 WLOOP D =X'05° E32012
0009 JEQ WLOOP 332FFA
000C +LDCH BUFFER,X 53900000
0010 WD =X05° DF2008
0013 TIXR T B850
0015 LT WLOOP 3B2FEE
0018 RSUB 4F0000
END FIRST
0018 J =X05 05

The assembler must also include information in the object program that will cause the loader
to insert the proper value where they are required. The assembler maintains two new record in

the object code and a changed version of modification record.

Define record (EXTDEF)

Col. 1 D

Col. 2-7 Name of external symbol defined in this control section
Col. 8-13 Relative address within this control section (hexadecimal)
Col.14-73 Repeat information in Col. 2-13 for other external symbols

Refer record (EXTREF)

Col. 1 R
Col. 2-7 Name of external symbol referred to in this control section
Col. 8-73 Name of other external reference symbols

Modification record

Col. 1 M

Col. 2-7 Starting address of the field to be modified (hexadecimal)

Col. 8-9 Length of the field to be modified, in half-bytes (hexadecimal)
Col.11-16 External symbol whose value is to be added to or subtracted from

the indicated field

A define record gives information about the external symbols that are defined in this control
section, i.e., symbols named by EXTDEF.A refer record lists the symbols that are used as

external references by the control section, i.e., symbols named by EXTREF.

The new items in the modification record specify the modification to be performed:
adding or subtracting the value of some external symbol. The symbol used for modification

may be defined either in this control section or in another section.

The object program is shown below. There is a separate object program for each of the
control sections. In the Define Record and refer record the symbols named in EXTDEF and
EXTREF are included.

COPY

HGOPY 000000001033

DBUFFER000033BUFENDOO01033L ENGTHO0002D |

RRDREC WRREC|

10000001 D] 720274B1000000320232900003320074B1000003F 2FEC0320160F 2016
100001DODO100030F200A4B1000003E2000

T00003003454F 46
M0O0000405+RDREC
M00001105+WRREC
M00002405+WRREC
E000000

RDREC
HRDREC (00000000002B

RBUFFERLENGTHBUFEND |

T000000] DB410B400B44077201FE3201B332FFADB2015A004332009579000008850
T00001DOE3B2FEY] 31000004F000QF 1000000

ND0001805+BUFFER
N00002105+LENGTH
00002806 +BUFEND
N00002806-BUFFER
E

WRREC

HWRREC 00000000001C

RLENGTHBUFFER |
T0000001CB41077100000E3201232FFA53900000DF 2008B8503B2F EE4F000005
N00000305+LENGTH
NO000ODO5+BUFFER
E

- BUFEND - BUFFER

e In the case of Define, the record also indicates the relative address of each external symbol
within the control section.For EXTREF symbols, no address information is available. These

symbols are simply named in the Refer record.

e Handling Expressions in Multiple Control Sections: The existence of multiple control
sections that can be relocated independently of one another makes the handling of
expressions complicated. It is required that in an expression that all the relative terms be

paired (for absolute expression), or that all except one be paired (for relative expressions).

e When it comes in a program having multiple control sections then we have an extended

restriction that:

— Both terms in each pair of an expression must be within the same control section
If two terms represent relative locations within the same control section , their
difference is an absolute value (regardless of where the control section is
located.

Legal: BUFEND-BUFFER (both are in the same control section)

— If the terms are located in different control sections, their difference has a value
that is unpredictable.
Illegal: RDREC-COPY (both are of different control section) it is the
difference in the load addresses of the two control sections. This value
depends on the way run-time storage is allocated; it is unlikely to be of
any use.
e How to enforce this restriction
— When an expression involves external references, the assembler cannot
determine whether or not the expression is legal.

— The assembler evaluates all of the terms it can, combines these to form an
initial expression value, and generates Modification records.

— The loader checks the expression for errors and finishes the evaluation.

Assembler Design Options

e There are two design options or the assembler.

— One pass assembler: is used when it is necessary to avoid a second pass over the source program.

— Multipass Assembler: allows an assembler to handle forward references.

One-Pass Assembler

The main problem in designing the assembler using single pass was to resolve forward

references. We can avoid to some extent the forward references by:

e Eliminating forward reference to data items, by defining all the storage reservation
statements at the beginning of the program rather at the end.

e Unfortunately, forward reference to labels on the instructions cannot be avoided. (forward
jumping)

e To provide some provision for handling forward references by prohibiting forward
references to data items.

There are two types of one-pass assemblers:

e One that produces object code directly in memory for immediate execution (Load- and-go
assemblers).

e The other type produces the usual kind of object code for later execution.

Load-and-Go Assembler

e Load-and-go assembler generates their object code in memory for immediate
execution.

e No object program is written out, no loader is needed.

e Itis useful in a system with frequent program development and testing

o The efficiency of the assembly process is an important consideration.

e Programs are re-assembled nearly every time they are run; efficiency of the assembly process

is an important consideration.

Line Loc Source statement Object code
] D) QPY S LA |
1 1000 EOF BYTE EOF 154F4(
2 10(THRET JOR. I
100¢ ZER(JORT I
: RETADR ESh
= 00C LENGTH
. O0OF RUFE B a0
: 2001 I TL RETADR 14100
2 CLA JSUB R j 4820
) 1C DA ENGTH)100¢
5 ‘OMP ZERO I
(O1F JEC ENDFTI 2z4
e A ;I [’— '\ . | _' 4 ¥
202 CLOOP (
: ES
\.JI

Forward Reference in One-Pass Assemblers: In load-and-Go assemblers when a forward

reference is encountered :

e Omits the operand address if the symbol has not yet been defined

e Enters this undefined symbol into SYMTAB and indicates that it is undefined

e Adds the address of this operand address to a list of forward references associated with the
SYMTAB entry

e When the definition for the symbol is encountered, scans the reference list and inserts the
address.

e At the end of the program, reports the error if there are still SYMTAB entries indicated
undefined symbols.

e For Load-and-Go assembler

o Search SYMTAB for the symbol named in the END statement and jumps to
this location to begin execution if there is no error

After Scanning line 40 of the program:
40 2021 J CLOOP 302012

The status is that upto this point the symbol RREC is referred once at location 2013,
ENDFIL at 201F and WRREC at location 201C. None of these symbols are defined. The

figure shows that how the pending definitions along with their addresses are included in the

symbol table.

Memory

address Contents Symbol Value
1000 454F4600 00030000 OOXXXXXX XXXXXXXX LENGTH | 100C
1010 XXXXAXXXX AAXXXXXX KXXAXXXX XXXXXXXX RDREC % | @ » 2013 ﬂ
’) __——[THREE |1003
2000 AXXXXX XXXKXXKX XXXXXXXX XXXXXX14 ZERO 1006
2010 10094&?_S —Joolooc 28100630 [——Jas], T] . =7 1b
2020 [93c2012 -« h »
2 ' EOF 1000
» ENDFIL ¥ | G 201C | O

RETADR | 1008

BUFFER | 100F

CLOOP |2012

FIRST 200F

The status after scanning line 160, which has encountered the definition of RDREC and
ENDFIL is as given below:

Memory
address

Contents

1000
1010

.
.
.

2000

2010

2020

2030

2040

2050

454F4600 00030000
XXXXXXAX XXXXXXXX

XXXXXXAX XEXXRRXR

10094820 3D00100C

3C2012 0010000C
3 8- 10094C00
001006E0 20393020

[0 oF

00xxxxxX
XXXXXXXX

T XXXXXXXX

28100630

100F0010

00F10010
43D82039

XXXXRXXX
AXXXXXXX

xxxxxx14

202446 |«

03e100

00041006

28100630

% Symbol Value
LENGTH | 100C
RDREC | 203D
-THREE | 1003
ZERO | 1006
WRREG_ | * Io——DBmF] ~}——>[2031 |0]
| EoF 1000
"ENDFIL_| 2024
RETADR | 1009
BUFFER | 100F
CLOOP | 2012
FIRST 200F
MAXLEN | 203A
INPUT | 2039.|
EXIT * -—»{' 2050 [o]
ALOOP | 2043

One-Pass Assembler that generates object code:

e If the operand contains an undefined symbol, use O as the address and write the Text record

to the object program.

e Forward references are entered into lists as in the load-and-go assembler.

e When the definition of a symbol is encountered, the assembler generates another Text record

with the correct operand address of each entry in the reference list.

e When loaded, the incorrect address 0 will be updated by the latter Text record

containing the symbol definition.

HACOPY A001000A00107A
TAOO1000A09A454!’46/\000003’\000000

TAOOZOOFAI SA16 1009,\48

= e s

T00201C022024 | -
A A A,

090000lQQCAZS1006A300000480000A3C2012

TA002024A1 9/\00 IOOOAOC lOOl’-;\001003A0C100CA4 80000A081009A4C0000AF lAOOIOOO

[T00201302203D |
N N N

TA00203DA1EA0101006A001OO6AE02039A302043AD82039A28l006A300000A54900FA26203AA382043
TAOOZOSOAOZAZOSB

TA002058A07A10lOOCAloCOOOOAOS

TAOOZOI FA02A2062
T/\°°203 1A02A2062
TA002062A1 8A06 1006,\!:‘.0206 1A302065A509001‘;\DC206 lAZCl OOCA382065A400000

EAOOZOOF

Algorithm for one pass assembler

pegin ‘ ‘
read first input line
if OPCODE = 'START' then
pegin

save ¥ [OPERAND] as starting address
jnitialize LOCCTR as starting address
read next input line
end {if START)
else
initialize LOCCTR to 0
while OPCODE # 'END’ do

begin
if there is not a comment line then
begin
if there is a symbol in the LABEL field then
begin

search SYMTAB for LABEL
if found then
begin
if symbol value as null
set symbol value as LOCCTR and search
the linked list with the corresponding
operand
PTR addresses and generate operand
addresses as corresponding symbol
values
set symbol value as LOCCTR in symbol
table and delete the linked list

end
else
insert (LABEL, LOCCTR) into SYMTAB
end
search OPTAB for OPCODE
if found then
begin
search SYMTAB for OPERAND address
if found then
if symbol value not equal to null then
store symbol value as OPERAND address
else . '
insert at the end of the linked list
with a node with address as LOCCTR

else
insert {symbol name, null)

add 3 to LOCCTR

end
else if OPCODE = *WORD’ then
add 3 to LOCCTR & convert comment to

object code

else if OPCODE = ‘RESW’ then
add 3 #[OPERAND] to LOCCTR

else if OPCODE = ‘RESB’ then
add # [OPERAND] to LOCCTR

else if OPCODE = ‘BYTE’ then
begin

find length of constant in bytes
add length to LOCCTR
convert constant to object code

end
if object code will not fit into currernt

text record then

begin
write text record to object program

initialize new text record

end
add object code to Text record

end
read next input line
end
write last Text record to object program
write End record to object program
write last listing line
end {Pass 1)

MultiPass Assembler:

e For a two pass assembler, in EQU assembler directive we required that any symbol on the
right hand side be defined previously in the program. This is because o the two pass.If

multipass is possible this restriction can be avoided. Eg:

ALPHA EQU BETA
BETA EQU DELTA

DELTA RESW1

Working of Multipass Assembler:
e A multipass assembler can make as many passes as needed to process the definition of symbols.

e For aforward reference in symbol definition, we store in the SYMTAB:
o The symbol name
o The defining expression
o The number of undefined symbols in the defining expression

e The undefined symbol (marked with a flag *) associated with a list of symbols depend on
this undefined symbol.
e When a symbol is defined, we can recursively evaluate the symbol expressions

depending on the newly defined symbol.

Multi-Pass Assembler Example Program

of undefined symbols 1 the
defining expression

The defining expression

HALFSZ]&1] MAXLEN/2 [0

i HALFSZ EQU MAXLEN/2
2 MAXLEN EQU BUFEND-BUFFER
3 PREVBT EQU BUFFER-1
4 BUFFER RESE 4096
BUFEND EQU ¥

Depending list
#
~

MAXLEN [*

| od—{ Havrsz [o|

T

Undefined symbol

Multi-Pass Assembler : Example for forward reference in Symbol Defining Statements:

BUFEND ||+ [—-—o[MAXLEN]o]
HALFSZ Iulmxx.swz]e

MAXLEN [az BUFEND-BUFFER [o-—.[nm.:sz |u|
BUFFER I [o——b[MAXLEN ln]

2 MAXLEN EQU BUFEND-BUFFER

BUFEND I * l 0-—.[MAXLEN [0]
HALFSZ |&1 lMAXLENIZ l 0

PREVBT l&![BUFFEFM [0

MAXLEN l&i’l BUFEND-BUFFER l 0-—01 HALFS2Z [0

BUFFER |+ |

1

! MAXLEN | o}—] PREVET [0

3 PREVBT EQU

BUFFER-1

—— [| BUFEND [2034 0
BUFENDJ * { o1—>{ MAXLEN | 0 | ,
|
_ =T HALFSZ jsoo 0
HALFSZ |&1| MAXLEN/2 10 |
PREVBT | 1033]—CT jEEVR]‘033 Jl
e — - T T
MAXLEN |&118UFENO-BUFFEH]—--—»LHAU-SZIO} | MAXLEN [1000 . L
BUFFER |1034) BUFFER | 1034 Io
.
4 BUFFER RESB 4096 5 BUFEND EQU

Implementation Example: MASM ASSEMBLER

Microsoft MASM assembler works for Petium and other %86 systems.

In this system memory is considered as segments.

An MASM assembly language program is written as collection of segments. Each segment is defined
as belonging to a particular class, corresponding to its contents. Commonly used classes are CODE,
DATA, CONST and STACK

During program execution the segments are addressed via the x86 segment registers. Code segments
are addressed using register CS and stack segments are addressed using register SS. These segment
registers are automatically set by the system loader when a program is loaded for execution.
Register CS is set to indicate the segment that contains the starting label specified in the END
statement of the program. Register SS is to indicate the last stack segment processed by the loader.
Data segments (including constant segments) are normally addressed using DS, ES, or GS.

By default the assembler assumes that all references to data segments use register DS. This
assumption can be changed by the assembler directive ASSUME.

ASSUME ES: DATASEG?2

Registers DS, ES, FS and GS must be loaded by the program before they can be used to address data
segments. Eg:

MOV AX, DATASEG2

MOV ES, AX

Would set ES to indicae the data segment DATASEG2

Jump instructions are assembled in two different ways, depending on whether the target of the jump
is in the same code segment (near jump) or in a different code segment(far jump).

The length of the assembled instruction depends on the operands that are used. An operand that
specifies a memory location may take varying amounts of space in the instruction depending upon
the location o the operand.

First pass of the x86 assembler must analyze the operands of an instruction, in addition to looking at
the opcode.

Segments in a MASM source program can be written in more than one place using the assembler
directive SEGMENT.

References between segments that are assembled together are automatically handled by the
assembler.

MASM can also produce an instruction timing listing that shows the number of clock cycles required

to execute each machine instruction.

MODULE- 4

LOADERS AND LINKERS

Introduction

The Source Program written in assembly language or high level language will be
converted to object program, which is in the machine language form for execution. This
conversion either from assembler or from compiler, contains translated instructions and data
values from the source program, or specifies addresses in primary memory where these items
are to be loaded for execution.

This contains the following three processes, and they are,

e L oading - which allocates memory location and brings the object program into
memory for execution - (Loader)

e Linking- which combines two or more separate object programs and supplies the
information needed to allow references between them - (Linker)

e Relocation - which modifies the object program so that it can be loaded at an address

different from the location originally specified - (Relocating Loader)

4.1 Basic Loader Functions:

e A loader is a system software that performs the loading function. It brings object program into

Source Object
bject
Assembler Ol
Program) Program Loader program

ready for
execution

Memory

Type of Loaders

The different types of loaders are, absolute loader, bootstrap loader, relocating loader
(relative loader), and, linking loader. The following sections discuss the functions and design

of all these types of loaders.
4.1.1 Design of Absolute Loader:

e The operation of absolute loader is very simple. The object code is loaded to specified locations
in the memory. At the end the loader jumps to the specified address to begin execution of the
loaded program. Linking and relocation is not done.

e The algorithm for this type of loader is given here.

Begin

read Header record

verify program name and length

read first Text record

while record type is != ‘E’ do
begin
{if object code is in character form, convert into internal representation}
move object code to specified location in memory

read next object program record

end

jump to address specified in End record

end

Algorithm for Absolute loader

e Inthis all functions are done in a single pass. The header is checked to veriy that the correct program
has been presented for loading. As each text record is read the object code it contains is moved to the
indicated address in memory. When the End record is encountered the loader jumps to the specified
address to begin execution of the loaded program.

ﬂ&UPY JPCiDGQ@GiU?A
%PU!UUQJE%élOH%&EZGJ%pH]ﬂB(ﬁHEEE%ﬁQIO]%ﬁﬂﬁuﬁ{gt!UU%@OlGE%@ClOB%@UlOZB
QPGIOlﬁg%pci03@&&2&6%?31G3%§C000Q&SLFﬁ%PGGUU%PGUUUU
2?0203%&Ey&lﬂiqpﬁlGEQﬁUIG5%90203%@8203%?81039}82051?&@“3%?C205%93203F
29020511q&OlG}§$CUUOQEE@U[00%@51&3%@020?%}UZDG%PU?UJ%PCEUF%;ClﬂBé

T602073073820644C000005

QpULUOO .

K (a) Object program

Memory

address Contents
a0 ERTEALER FEXEXXXNX e e EXMEXLXEXAE
garo EEMEAENE XEXXXEAURN KEXXNXHEX NXEEXEHAX

» [] L] L] L]

[] L] [] [) []

] L] L] L] L
OFFG FEEMEZEE MNUNENULEN HAEHHEHN HEMEAKRX
1000 PALD3Z4E 203900140 36281030 30F01548
1050 613010 0300102A DC103%00 102T0CE0
ig2g IGABINGEL OBIGI3LC DO0D4S54YF 4600CCU3
140340 DOGOOIEK HHAWNEEHANN HEXXNEHE :uc:n:}i:}i:xx""'_‘G‘:'F"rJ

L] » [] - »

L] [] [] L. *

[] [] [] [] []
2030 FEEKKXLX XXHARAXXR =xwl41030 COLOI0ED
20410} A3D3020 3FDEZOSEH 281493036 20575490
205G 39ZC204F 3IBZ03FL0 I03BACOO DORFIGOIC
206G N0041030 ED2074930 20645080 39DCZO7Y
2070 |20103638 20644050 OUODSrxxx xxxxxxxX
20810 EXHHKAXRE EHAMERKEX HEXKEKEX HNFEKREXXX

[] [] [] L | []

a - L] [] »

[] - . L []

ib) Program loaded in memory

e The figure (b) shows the representation of program from figure (a) after loading.

e In the object program each byte of assembled code is given using its hexadecimal representation in
character form.

In the object program , each byte of assembled code is given using its hexadecimal representation in
character form. For example, the machine opcode for an STL instruction would be represented by
the pair of characters “1”” and “4”. When these are read by the loader , they will occupy two bytes of
memory. This opcode must be stored in a single byte with hexa decimal value 14. Thus each pair of
bytes from the object program must be packed together into one byte during loading.

4.1.2 A simple bootstrap loader

When a computer is first turned on or restarted, a special type of absolute loader, called bootstrap loader is
executed. This bootstrap loads the first program to be run by the computer-- usually an operating system.
The bootstrap itself begins at address 0. It loads the OS starting address 80.

Working: Consider the bootstrap loader for SIC/XE. The bootstrap loader begins at address 0 in the
memory. It loads the OS starting at address 80. Each byte of object code to be loaded is represented on
device F1 as two hexa decimal digits(Text record) . Object code is loaded to consecutive memory locations
starting at address 80. After all the object code from device F1 has been loaded the bootstrap jumps to the
address 80.

GETC subroutine — This subroutine reads one character from device F1 and converts from ASCII to hex.
This is done by subtracing 48 if the character is from 0 to 9. For characters A to F subtract 55. Subroutine
jumps to address 80 when end of line is reached.

Main loop of the bootstrap loader- This keeps the address of the next memory location to be loaded in
register X. GETC is used to read and convert a pair of characters from device F1(represents one byte of
object code). These two hexadecimal values are combined to a single byte by shifting the first one left by 4
bit positions and adding the second to it. The resulting byte is stored at address currently in register X

The algorithm for the bootstrap loader is as follows

BOOT START a BOOTSTRAP LOADER FOR STC/XE

. THIS BOOTSTRAP READS OBJECT CODE FRCOM DEVICE Fl AND ENTERS IT
- INTD MEMORY STARTING AT ADDRESS B0 (HEXADECIMAL) ., AFTER ALL OF
. THE CODE FROM DEVF1 HAS BEEN SEEN ENTERED INTO MEMORY, THE

. BOOTSTEAP EXECUTES 2 JUMP TC ADDRESS 80 TO BEGIN EXECUTION OF
. THE PROGEAM JUST LOADED. RREGISTEE X CONTAINS THE WEXT ADDRESS
. TO BE LOADED.

CLEAR A CLEAR REGISTER A TO ZERO
LDX #1238 INTTTALIZE REGISTER ¥ TO HEX B0
LOOP JSUB GETC READ HEX DIGIT FROM PROGRAM BEING LOADED
MO A5 SAVE IN REGISTER S
SHIFTL 5,4 MOVE TO HIGH-ORDER 4 BITS OF BYTE
JSUB GETC GET NEXT HEX DIGIT
ADDR S, A COMEINE DIGITS TO FORM OME BYTE
STCH 0,.x STORE AT ADDRESS IMN REGLISTER X
TIXR XX ADD 1 TO MEMORY ADDRESS BELING LOADED
J LooPp LOOP UINTIL FND OF TNPUT IS REACHED

CETC

SUBRQUFI'IIVE T) REAT} ONE CHARACTER FROM INFUT DEVICH AND

. COMVERT IT FRCOM ASCITI CODE TO HEXADECTIMAL DIGIT VALUE. THE
» CONVERTED DIGIT waALUE IS RETURNED IN REGISTER A, WHEN AN

. FNTZ OF-FILE IS5 REMD, CONTRCL 1S THANSFERRED TO THR STARTING
. ADDRESS (HEX EBQ) .

dys] THPT TEST IMNEUT DEVICE
JEQ SGETC L TINTIL REARDY
R LNIUT REATY CHARACTER
COMEP #4 TF CHARACTER 15 HEX 04 (FN» OF FILE),
JEQ 20 JUMP T START OF PROGREAM JIIST LOATET:
COME #48 COMPaRE "1y HEX 30 (CHARACTEER "0)
JLT GETC SKIP CHARACTERES LESS THAN 0O°
SUB #48 SUBTRACT HEX 30 PROM ASCITI CODER
COopMp #10 TF RESULT IS LESS THAN 140, CONVERSION 12
JLT RETURN COMPLETE . QTHERWISE, SUBTRACT 7 MORE
={N)=] #7 (FOR HEX DICSITS A7 THROUSID ‘F7)
RETUERN REUB EETURN T CATIFRER
IMPLT By H'Fl- CODE FOR INPUOT DEVICE
END LoOR

Figure 3.3 Bootstrap loader for SIC/XE.

4.2Machine-Dependent Loader Features

Absolute loader is simple and efficient, but the scheme has potential disadvantages. One of
the most disadvantage is the programmer has to specify the actual starting address, from
where the program to be loaded. This does not create difficulty, if one program to run, but
not for several programs. Further it is difficult to use subroutine libraries efficiently.

This needs the design and implementation of a more complex loader. The loader must
provide program relocation and linking, as well as simple loading functions. This depends

on machine architecture.

4.2.1Relocation(Relocating loader)

Loaders that allow program relocation are called relocating loaders.
There are two methods for providing relocation as part of the object program.
= Modification record

= Bit masking

Modification Record

A modification record is used to describe each part of the object code that must be changed when
the program is relocated.

Consider SIC/XE programs, Most of the instructions in this program uses relative or immediate
addressing. So modification not required. Only format 4 instructions require modification

Each modification record specifies the starting address and length of the field to be modified and
what modification to be performed.(adding the start address).

HACUPY ’{)OUOOOAOOIOTT

TAOOOOUOAID,\I 7 2021)‘\69202D}en10l036"\032026‘“290000’\33200?A4BlOl OSD&! FZFEQ\032010
TAOOOOL DA13A0F2016n0 10003A0F200Dn&3 IOIOSDA3E2003A65&F&6

TA001036A1DAE£' 19\340[?,\‘31'.&0!\75 10 100(}\3320 1 9!\3321??5?3201%5004’\332008},\5?0003,3!350
3\001053’\19\332!'34\,{13#000‘,&?000@\!‘ IABﬁl.OA??ﬁOOOAEB?OI 1A332 FF%?SCOO 3ADFZDDBA'5850
TAOl)lO?UAO?ASBZFEFh&Fl}OOOﬁOS

MP0000705+COPY

MA{]OODI 405+COPY

P&\DDOG?_ 7n05+COPY

%\000000

Figure 3.5 Object program with relocation by Modification records.

Algorithm for SIC/XE relocation loader

2

<<
Q
n W
w =
L
OLJ
Z ')
—a<C
>3 =)
oo
w —
(o2 b

Bitmasking

In SIC program relative addressing is not used. So every instruction needs modification. We can

not write modification records for all instructions.
So relocation bits are used. Each instruction object code is associated with relocation bit.

Relocation bits for each text record is written together into bitmask after the length using 3

hexadecimal digits.(12 bits)

Example:

HACOPY PDODGOAD[]IO?A
TAOOOODOAI FFCl40033}\45103?‘\000036A280030ﬂ3000lSnﬁG 1061/\3(‘:000%\0000ZAPCOOSQAOOUOZD
TAUDOOIEAI SHE@AOC0036A48 106 IADSOOB3AﬁC0000n45&}‘66{\000003},@00000
01039’,\1%&040030’\000039@01050‘,\3010313;\!)31OSDA280030A301057’,\548039A20105E‘?\33103F
TAOOJOS ?ADMIOOOEIGJ\QCDOOQ\F lAODIOOO
0106 lAl %LE_&OQOUBQ\EOIO?%E)O]DG#ASUB039ADCI.079J\200036A381DGQAQCDODOAOS
E0Q0O0000

Figure 3.7 Object program with relocation by bit mask.

e |f the relocation bit is 1 program starting address is to be added to this word.

FFC=111111111100

SIC relocation loader algorithm

4.2.2Program Linking

Loc

oDoo

o020
o023
onz27

o040

o054
Q054
0057
005n
Q05D
Q060

Consider the program of control sections. The program is made up of 3 control sections.
1. Main program
2. Read subroutine
3. Write subroutine

These control sections could be assembled together or they could be assembled independently
as separate segments of object code after assembly.

The programmer thinks the three control sections together as a single program. But loader
considers this as separate control sections which are to be linked , relocated and loaded.
Consider the three separate programs PROGA,PROGB,PROGC. In this example, there are
differences in handling the identical expressions within the 3 programs.

Consider the references and the corresponding modification records.

The general approach is assembler evaluate as much as of the expression it can. The remaining
terms are passed on to the loader through modification records.

Source statement Object code

PROGRA START a
EXTDEF LISTHA, ENDA
EXTREF LISTE,ENDE, LISTC, ENDC

REF1 T.a LISTA 03201D
REFZ2 +LIT LISTE+4 FT1O0004
REF3 1412 $HENDA-T.TSTA 050014
LIST BOU *

ENDA BECLT *

REF1 WORDy ENDA-LISTA+LISTC Q00014
REFS WORDY ENDC-LISTC-140 FEFFFF&
REF& WORLY EMNDC - L STPC+LTETA-1 JODO3F
RETY WORD ENDA-LISTA {ENDBE- LISTE} Q00014
REFE WORD LISTB-LISTA FEFFFCO

BT REF1L

Loc Scource statement Object code

vl FROGE START ¥
EXTDEF LISTR,ENDE
EXTREF LISTA, ENDA, LISTC, FNDC

on3s RET'L +LDA LISTA 33100000

0028 EEF2 LOT LISTE+4 TI2027
003D REF32 FLDK LENDA-LISTA 5100000
D060 T.TSTE FQUI *

0070 TNDE EQUT *

0070 REF4 TRORD FHDA-T.TSTA+LISTC 200030
0073 REFS WORD ENDC-LISTC-10 FFEFFF6
0576 REF& WORD EMDO-LISTC+LISTA=1 FFFFFEF
0375 BEET WORD ENDA-LTSTL- { FNCE-LISTB) FFFFFO
0o REFS WORD LISTE-LISTA 000080

END

Figure 3.8 Sample programs illustrating linking and relocation.

Loc Source statement Object code

noona PROGC START 0
EXTDEF T.TSTC, ENDC
EXTEEF LISTA,ENDA, LISTE, ENDE

0018 REF1 PLOA LISTA 3100000

Gllc REEZ +LDT LISTB+4 77100004
GO20 REF3 + LD $ENDZ-T.ISTA 05130000
G030 LISTC BOO *

04z ENLC =QU *

o042 REF4 WORLD ENDA-LISTA+LISTC 000030
0045 REEFG WORD ENDC-T.TSTO-10 0oo0Go8
2048 REFG WORD EMDC-LISTC+LISTA-L 000011
004E REF7 WORD ENDA-LISTA- (ENDBE-T.ISTE) 0o0ong
J04E REFS WORD LISTE-LISTA 00000

BN

e Each program contains a list of items(LISTA, LISTB, LISTC). The ends of these lists are marked
by ENDA, ENDB, ENDC. Each program contains the same set of references to these external
symbols. Three of these are instruction operands(REF1,REF2,REF3). and the others are the values
of data words.(REF4 through REF8).

e Consider first reference marked REF1.For PROGA REF1 is simply a reference to a label within the
program. It is assembled in the usual way as PC relative instruction.In PROGB the same operand
refers to an external symbol. The assembler uses an extended format instruction with addess field
set to 00000. Object program for PROGB contains a modification record instructing the loader to
add the value of the symbol LISTA to this address field when the program is linked.This reerence is
handled exactly in the same way for PROGC.

HPROGA 000000000063
ISTA DOQO4CENDA 000054
KLISTB ENDB LISTC ENDC

T000020,0403201D77100004050014
M
T0000540F000014FFFFF600003F000014FFFFCO

OUUZQU5+LISTB

DDU5&05+LISTC

0005705+ENDC

0005706-LISTC
Egooos +ENDC

0005 ~LISTC

0005 +PROGA
%00059 é\—ENDB

0005D06+L15TB
EBOOOGdb&+LISTB

ooosgpa PROCGA

0002

Figure 3.9 Object programs corresponding to Fig. 3.8.

HPROGB PO00000OD0007F
DLISTB DO0060ENDE 000070
RLISTA ENDA LISTC ENDC

T0000360B0310000077202705100000

T00007Q0F00000QF FFFF6FFFFFEFFFFFQ000060
MD00037,05+LISTA
0003EQ5+ENDA

0003E05-LISTA
000700 6+ENDA
0007006 LISTA
0007606FLISTC
0007306 +ENDC
0007306-LISTC
MDO007606+ENDC
0007606-LISTC
0007606+LISTA
0007906+ENDA
MPO007906-LISTA
0007 GO6+PROGE
E\ouovqp -LISTA

HPROGC 000000000051

DLISTC QOOCO30ENDC

000042
ISTA’\NDA }ISTBJFNDB

%90001&9q9310000q3710000%95100000

TOOO0420F00006300000080060011000000000000

0001905+LISTA
ﬂpoﬂﬂlqp%rLlSTB
0002105 +ENDA
ngooz 05-LISTA
0004306 +ENDA
MD0004206~LISTA
MD0004206+PROGC
0004806+ LISTA
MOO0O04BO6+ENDA
MDOOO4BO6-LISTA
0004B06~ENDE
OUU&%Q@#LISTB
0004EQ6+LISTB
MOOOO4EO6-LISTA
E

Figure 3.9

(cont'd)

e The figure below shows how the three programs are loaded into memory.

Memeory
address Contents
0ooa EAXKAEUXE XKEXAAXXK XXEXUAXY EXXXHAXX
- - &
* L] [] - L]
- L] L] -
IFFO0 XXXEAXEH EXXAKEXAXK HXEXKAXIX XXEXHAXX
4000 |ieivernsn snsmares sumemass Per e
A0I0 Jo.aa.s e seamamen memsarws wesssrea
4020 03201D7 1040C705 00lda.er wevvses+ —PROGA
4030 Fesesese EEsEsEEE AsBbEaEE NEEBaans
GOA0 [sieususn wvsmansn asnemans T
G050 |eeiaannn 00412600 OO00BQ040 51000004
4060 000083, ciiiiiee diiaaaan
G070 fevuwense snauarss samsarss arsasses
40BO - e
4090 |uwareven smsaswes 031040 40772027
40480 [05100014 ..iiviis cviiiiie wnasenas +—PROGB
GOBD |uaussenas susnumes sxasanms mraases
. 1
4000 seaaes00 41260000 0B004051 00000400
4O0ED PO0BH.vee ceeurnes ssmaasrs memsssns
G0F0 |evureinsn sanarwns 20310 40407710
4100 |40CT0510 00Lld..., cawervas sausnsns le—PROGC
4110 RN B R Y R RO N A] EETIALEFE LN L R O
G120 Jevesnasn 00412600 ODOCBOQ&4D 51000004
4130 ﬂﬂﬂﬂﬁgxx AAXKXENKE HXHHEKEXX AXXXEXXX
4140 AXKAXTXA XNXAXXAX XXXAXXEX XXXHXXXX

-
-
-

Figure 3.10{a) Programs from Fig. 3.8 after linking and loading.

Ohject programs Memory contents

PROGA |HPROGA s+» 0000
M (REF4) .
(G00520FD00014) see s |) — (REF4)
s 1 1 4050{ssssasese[()412G[eannnennnsvs

MOR05306+ (5T :

-
-

L2 N}

|
|
!
PROGC | HEROGD «#+ 4/

/e e

Fil

/ - 44112
7 "'!m' {Actuai addross
!! : of LISTC)

/

j’ Load addresses
| PROGA 004000

\‘\ PROGE 14083

S EROGD 0040E

Figure 3.1%{b) Relocation and linking operations perormed on REF4
from PRCGA.

The values of REF4 through REF8 are same in all the three programs because the same source expression
appeared in each program.

4.2.3 Algorithm and data structures for a linking loader

Consider the algorithm for a linking and relocating loader.
We use modification records for both relocating and linking
This type of loader is found on SIC/XE machines whose relative addressing makes relocation
unnecessary.
Input- consists of a set of object programs (control sections) that are to be linked together.
Control sections or programs contain external references whose definition does not appear in the
same program or control section. So linking can not be done until an address is assigned to the
external symbol. So it requires two passes.

= Passl- Assigns addresses to all external symbols.

= Pass2- performs the actual loading relocation and linking.
The main data structure for the linking loader is an external symbol table ESTAB. It is analogous
to SYMTAB. It stores the name and address of each external symbol in the control section. The
table also indicates in which control section the symbol is defined.
Two variables: PROGADDR- Program starting address in memory where the linked program
should be loaded. Its value is supplied to the loader by the OS.CSADDR-contains the starting
address assigned to the control section currently being scanned by the loader.

Example: Consider the object programs of PROGA, PROGB, PROGC in fig 3.9 as input to the
loader.

Passl

e During the first pass the loader is concerned only with Header and Define record types in the
control sections.

e The beginning load address for the linked program(PROGADDR) is obtained from OS. This
becomes the starting address for the first control section(CSADDR).

e The control section name is entered into ESTAB with value given by CSADDR.

e All external symbols appearing in the define record for the control section are also entered into
ESTAB. Their addresses are obtained by adding the value specified in the Define record to
CSADDR.

e \When the END record is read the control section length CSLTH which was saved from the Header
record is added to CSADDR. This gives the starting address for the next control section.

e At the end of passl , ESTAB contains all external symbols defined in the control sections together
with addresses assigned to each.

e Many loaders include the ability to print a load map that shows these symbols and their addresses.

Output of passl

Control Symbol

section name Address Length

PROGA 4000 0063
LISTA 4040
ENDA 4054

PROGB 4063 007F
LISTB 40C3
ENDB 40D3

PROGC 40E2 0051
LISTC 4112
ENDC 4124

Algorithm for passl of a linking loader

Pass 1

bagin

geb PRIGEADDR [rom operaling Sysom

ot CZRO0OF to PROCADDE {for Lirsc control zcciicnt
while not ond of input do

begin
read nexh inpuh record (Header vecord for conbrol sechicn)
el DELTH o conbrol section lenghth

search ZETaB for control sectlon name
1f [cund then
aet errar flag {(duplicate sxrternal swvmbzl}
elge
enter control section nams into ESTAS with walues CSALLR
whilea recoxc bype = 'E' do
bagin
read oext nput rocoxd
1f record tyvpe = ‘DY then
for each symbol inm the recordd do
bagin
seesot BETAR [or 2yabol e
1f ifound then
aet crror flag [(duplicate sxternal synbol]
alEa
erter symbol into BETAS with walue
(C2ATDR 4+ indlcated addrass)
end {for:
end {whi’c # "E'}
add CELTH to CEADDR [startinmg accress Zor next control secctionl
end {whiles not EJF}
end {FPaz= 1}

Figure 3.11(a} Algerithm tor Pass 1 of a linking loader.

Pass2

e Performs the actual loading, relocation and linking of the program.

CSADDR holds the starting address of the control section currently being loaded.

e As each Text record is read , the object code is moved to the specified address (plus the current
value of the CSADDR).

e When a modification record is encountered , the symbol whose value is to be used for
modification is looked up in ESTAB. This value is then added to or subtracted from the indicated
location in memory.

e The last step performed by the loader is transferring of control to the loaded program to begin
execution.

Pass2 Algorithm

Pass 2

begin
set CHANCE co PROGCGALDE
et HEibkCAODE to FROGATIE
while nck end of inpan deo

begin

revad nesmt dnpas recoedd fHeader record;

gt CELTH Lo conbrol secticn langth
while recors tvoe # 'E° Ao

bagin
read next irput record
1f wecord twpe = 'T' than
beglin

Tif it oode is in caarascher torm, oorwers
‘nle intsrnal representazicr]
newe alject code from record So Location
ICSADCE,. + spooillind addéresa;
end [1f 'T"]
elege 1f record oype ‘4" then
hegin
aearch ZR0A3 for modifving symhbol oo
1£ Tound then
adid or subbtract smibel va_ue at _ocaklon
(CSATDE + spaedi Tierd addresal
alea
set errzor tlowg (undedf
end [if ‘M'}
and ‘whils £ a0

= P

el exbarnal ayrbael)

1f a0 adlrens 90 specified (in BEnd recoxdl then

woel EXECADDR Lo (OCSADEK + specifled address|
sdo CELTH bo CSADDE
end [while nct ECF:

Jumn to locatlion giwvern oy EXECRDDE (Cu sTavh exsmibion of looced Drogooom;
and [Fa=za 2]

Flgure 3.11(h) Algorithm for Pass 2 of a linking leader,

e The algorithm can be made more efficient if a slight change is made in the object program

format. that is assigning a reference number to each external symbol referred to in a control
section. This reference number is used in modification records.

4.3 Machine Independent loader features

4.3.1 Automatic Library search

e This feature allows a programmer to use standard subroutines without explicitly including them
in the program to be loaded. The routines are automatically retrieved from library as they are

needed during linking.
Loader can automatically include routines from a library into the program being loaded.

The programmer has to only give the subroutine name in the external reference. The routine
will be automatically fetched from the library and linked with the main program.

Working: Enter symbols from Refer record into the symbol table(ESTAB) . When the
definition is encountered the address is assigned to the symbol. At the end of pass the symbols
in ESTAB remain undefined represent unresolved external references . The loader searches the
library for the routines and process the subroutines as if they are part of the input stream.

The libraries to be searched by the loader contain assembled or compiled versions of the object
program(sub program). A special file structure is used for libraries. This is known as directory.
This contains the name of the subroutine and a pointer to its address within the file.

4.3.2 Loader Options

Many loader allow the user to specify options that modify standard processing.
Loaders have special command language that is used to specify options. Sometimes there is a
separate input file to the loader that contains such control statements. The programmer can even
include loader control statements in the source program.
Some of the loader options are:
1. Selection of alternative sources of input:
INCLUDE programname(libraryname)
This command direct the loader to read the designated object program from a library
and treat it as if it were primary loader input.
2. Command to delete external symbols or entire control section
DELETE csectname
This instruct the loader to delete the control section from the set of programs being
loaded.
3. CHANGE namel,name2
This command causes the external symbol namel to be changed to name2 wherever it
appears in the object program.
Eg: Consider the object program COPY. Here main program is COPY and the two
subroutines are RDREC and WRREC. Each of these is a separate control section.
Suppose that a set of utility routines are available on the computer system. Two of these
READ and WRITE are are designed to perform the same functions as RDREC and
WRREC. If we want to use READ and WRITE we can give the loader commands

INCLUDE READ(UTLIB)
INCLUDE WRITE(UTLIB)
DELETE RDREC, WRREC
CHANGE RDREC,READ
CHANGE WRREC,WRITE

4. Another common loader option involves the automatic inclusion of library routines to
satisfy external references. Most loaders allow the user to specify alternative libraries to
be searched using a statement such as LIBRARY MYLIB . Such user specified libraries
are normally searched before the standard libraries. This allows the user to use special

versions of the standard routines.

5. Loaders that perform automatic library search to satisfy external reference allows the
user to avoid some references using the command NOCALL. Eg: NOCALL STDDEV,
PLOT. This avoids the overhead of loading and linking the unwanted routines

6. Other options:

= No external reference should be resolved.
= Specify the output from the loader(load map)
= Specify the location at which the execution is to begin

4.4 Loader Design
e Loaders do loading , relocation and linking.
e There are 4 types
= Linkage editor- links the program stores it in a file and later loads.
= Linking loader- linking during load time
= Dynamic linking- linking during execurion time
= Bootstrap loader- loads the first program or OS.
4.4.1Differences between Linkage editor and linking loader

Linking loader linkage editor
1. Performs all linking and relocation 1. Produces a linked version of the program
operations and loads the linked program called load module which is written to a
directly into memory for execution file for later execution
2. A |Inklng loader searches the Iibrary and 2. Resolution of external references and

resolves external references every time the

orogram is executed library searching are only performed once.

3. The loading can be accomplished in one
3. More than one pass required. pass and no external symbol table
required, much less overhead than a
linking loader.

Object Object
program(s} program(sl

- 3
; Linking ; Linkage
Library loader Library editor
Mamory

(a)

Relocating
loader

¥

Memory

{b}

Figure 3.13 Processing of an object program using (a) linking loader
and (b) linkage editor.

Advantages of Linkage editors

Linkage editors can perform many useful functions besides simply preparing an object program
for execution. Consider the example, a program PLANNER that uses a large number of
subroutines. Suppose that one subroutine called PROJECT is changed. After new version of
PROJECT is assembled the linkage editor can be used to replace this subroutine in the linked
version of PLANNER.

INCLUDE PLANNER(PROGLIB)

DELETE PROJECT (delete from existing planner)

INCLUDE PROJECT(NEWLIB) (include new version)

REPLACE PLANNER(PROGLIB)

Linkage editors can also be used to build packages of subroutines or other control sections that
are generally used together. Eg: For FORTRAN programs there are a number of subroutines that
are used for input and output. They are read and write datablocks, encode and decode data items
etc. Linkage editor can be used to combine these subroutines into a package with the following
commands.

INCLUDE PLANNER (PROGLIB)
DELETE PROJECT

INCLUDE PROJECT (NEWLIB)
REPLACE PLANNER (PROGLIB)

INCLUDE READR{FTNLIB)
INCLUDE WRITER (FINLIRB)

INCLUDE BLOCK(FTNLIB)

INCLUDE DEBLOCK(FTNLIB)
INCLUDE ENCCDE(FTNLIB)
INCLUDE DECODE (FINLIB}

SAVE FTNIO (SUBLIB)

e Linkage editors can also allow the user to specify that external references are not to be resolved
by automatic library search.

4.4.2 Dynamic Linking

e In dynamic linking the linking function is done at execution time. That is a subroutine is loaded
and linked to the rest of the program when it is first called.

e Dynamic linking is often used to allow several executing programs to share one copy of a
subroutine or library. For eg: in C such fuctions are stored in dynamic linking library.. A single
copy of the routines in this library could be loaded into memory and all programs share this.

e In object oriented program dynamic linking is often used for references to software objects.

e Advantage:- Dynamic linking provide the ability to load the routines only when they are required.
For eg: consider the subroutine which diagnose the error in input data during execution. If such
errors are rare these subroutines need not be used.

e Consider the following example of dynamic linking. Here the routines that are to be dynamically
loaded must be called via an OS service request.

Loading and calling a subroutine via dynamic linking

= ‘s\-\..-.-\.\\\\ ,,,.MSEE?EE
szi:ii} RN RN f':i“‘ :sz'&
-t by
poedssd R
¥ Dynamic
loader 0 .
(part of the l?”zm'“
aperating wader
systam}
Load-and-call] [T~ TR K YT]
Gy A.-;)

ERRHANDL | [Faaimiiiisny AL e S5
fiLLed LRy e
i3 REELEEEY
_-".212;2222%; Y
Pt bk T

| User User
program program
?-«N‘Ji
Kivananes 2 ERRHANDL
S5 u.v\.'.-u.\s.*. — = 7
\s\:-:-ussss- .Eg?;;.g;_‘.zi_ 34
N“*zﬁsz kesriiss
AR TNy
iR e
Frana ALY
EE A
£
P
* ! {4{5«:\?-9-\.—\.-” id
.::sé?nmw G

{a) {b)

F& € g RS Svre
T332 AANV
LaseEs - > Sh s aa
Dynamic Dynamic |, Dynamic
loader loader :....| loader
AT Los-andcall| [T LG
23 2 AMAN ERRHANDL 22
jn;th*h: ¥
Usar User Usar
program program = program
> ERRHANDL ERRHANDL ERRHANDL *+
FIEEANGT NN e s
“.“\ ;2}?8H
o u‘o’_:hf- A
3 FLASASS
Sraedad o
() d) (e}

Figure 3.14 Loading and calling of a subroutine using dynamic linking.

e When the dynamic linking is used the association of an actual address with the symbolic name
of the called routine is done at execution time.. This is known as dynamic binding.

4.3.3 Bootstrap loaders

e Consider how the loader itself is loaded into memory. OS loads the loader. How the OS gets loaded.

e Inan idle system if we specify the absolute address the program can be loaded at that location. that is a
mechanism of absolute loader is required.

e One solution to this is to have a built in hardware function that reads a fixed length record from some
device into memory at some fixed location. This device can be selected via console switches. After the
read operation is complete the control is automatically transferred to the address in memory where the
record was stored. This record contains machine instructions that load the absolute program that follows.

e If the loading process requires more instructions than can be read in a single record this first record
causes the reading of others and in turn other records . Hence the name Bootstrap.

[Type text]

MODULE 5

MACRO PROCESSOR

A Macro represents a commonly used group of statements in the source programming

language.

e A macro instruction (macro) is a notational convenience for the programmer
o Itallows the programmer to write shorthand version of a program (module
programming)
e The macro processor replaces each macro instruction with the corresponding group of
source language statements (expanding)
o Normally, it performs no analysis of the text it handles.
o It does not concern the meaning of the involved statements during macro
expansion.
e The design of a macro processor generally is machine independent!
e Two new assembler directives are used in macro definition
o MACRO: identify the beginning of a macro definition
o MEND: identify the end of a macro definition
e Prototype for the macro
o Each parameter begins with ‘&’

= name MACRO parameters

body

MEND

o Body: the statements that will be generated as the expansion of the macro.

[Type text]

e Macro Definition and Expansion

5.1 Basic Macro Processor Functions:

e Macro Processor Algorithms and Data structures

5.1.1

Macro Definition and Expansion:

e Consider the example of an SIC/XE program using macro instructions. This program defines

and uses two macro instructions , RDBUFF and WRBUFF.

e The functions and logic of RDBUFF macro are similar to RDREC subroutine.

5 COFY START
10 ROBUFT MACRO
15 .

20 . MACRO
25 .
30 CLEAR
a5 CLEAR
40 CLEAR
a5 +LDT
50 D
e15] JEQ
RD
85 CCOMPR
70 JED
75 STCH
a0 TIXR
85 JLT
=19] ST
95 MEND

[Type text]

0

COPY FILE FROM INPUT TO OUTPUT

&TMNDEV, &BUFADR, &£RECLTH

TO READ RECORD INTO BUFFEER

H
B
s

#4096

=X & INDEV’
*-3

=X’ & INDEV
A8
*+11
&BUFADR, ¥
T
*.10
&RECLTH

CLEAR LOOP COUNTER

SET MAXTMUOM RECORD LEMGTH

TEST INPUT DEVICE

LOOF UNTIL EEADY

FEAD CHARACTER INTCO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHAFACTEE. IN EUFFER

LOOF UNLESS MAMTMOM LEMNGTH
HAS EBEEN REACHED

SAVE RECORD LENGTH

100
105
110
115
120
i25
130
135
140
145
150
155
160
165
170
175

180
180
195
200
205
210
215
220
225
230
235
240
245
250
255

WEREBUFF

FIRST
CLOOP

ENDFIL

ECF
THREE
FETADR
LENGTH
BUFFER

Figure 4.1

MACRO &0OUTDEV, &BUFALR , &« RECLTH

MACRO TO WRITE RECORD FROM BUFFER

CLEAR X CLEAR LOOP COUNTER

LoT &RECLTH

LDCH &BUFADR, X GET CHARACTER FROM BUFFER
D =X’ &OUTDEV " TEST OUTPUT DEVICE

JEQ *-3 LOOP UNTIL READY

WD =¥'&0UIDEV " WRITE CHARACTER

TIXR T LOOP UNTIL ALL CHARACTERS
JLT *-14 HAWVE BEEN WEITTEN

MEND

MATN PROGRAM

STL EETADE SAVE RETURN ADDRESS
EDBUFF F1,BUFFER, LENGTH READ RECORD INTO BUFFER
LDA LENGTH TEST FOR END OF FILE
COMP #0

JEQ ENDEFTIL EXIT IF EOF FOUND
WREUFF 05, BUFFER, LENGTH WRITE OUTFUT RECORD
J CLOCP LOoP

WRBUFF 05, EOF, THREE INSERT EBEOF MARKER

0 BRETADR

BYTE CTEQF’

WORD 3

RESW 1

RESH 1 LENGTH OF RECORD

RESEB 4096 4096-BYTE BUFFER AREA
END FIRST

Use of macres in a SIC/XE program.

e Two new assembler directives (Macro and MEND) are used in macro definitions. The keyword

macro identifies the beginning of the macro definition. The symbol in the label field (RDBUFF)

is the name of the macro and entries in the operand field identify the parameters of the macro.

Each parameter begins with the character & which helps in the substitution of parameters

during macro expansion. Following the macro directive are the statements that make up the

body of the macro definition. These are the statements that will be generated as the expansion

of the macro. The MEND directive marks the end of the macro.

e Macro invocation or call is written in the main program. In macro invocation the name of the

macro is followed by the arguments. Output of the macroprocessor is the expanded program.

[Type text]

L
180
1580
140a
180k
180c
1904
130e
190F
180g
1800k
1501
1807
18940k
1501
190m
195
200
0%

Expanded Program

COEY

FIEET
LCLODE

CToOF

ZTART

BEDBUFE

CTEAR

CLEAR

CLEAR
~LIT

h

JEQ

RD

COMER

COMP
JEQ

O
EETADR
F1,BUFFEE, LENGTH
by
A
=
#4098
=XK1l
*-3
=X KL
PO
*+1l
BUFFEHR, X

e Another simple example is given below:

e Program with macro

EX1

SAMPLE

N1

N2

[Type text]

MACRO

LDA

STA

MEND

START

EX1

RESW

RESW

END

&A,&B

&A

&B

1000

N1,N2

COOFY FILE FROM THNEUT TO GUTRUT
ZAVE RETURN ANDRESS

HEAD HECORD INTO EUFFER

CLEXR LOOP COUNTEER

SELD MAXIMUM BECOED LENGTH

TEST INPUT DEVICE

TOOP UNTIL READY

EEAD CTHARAOTER INTO RES A

TEST T0R END OF EECORD

EXIT LOCP IF EOR

SICES CHRARACTER IM EUFFER

LOGE TINLESS MBXTMUM LEMGTH
HAS BEEN E=ERCHED

SAVE RECCORD TEMNGTH

TEST FORE END OF FILE

EXIT IF ECF FOUND

Expanded program

SAMPLE START 1000
EX1 N1,N2
LDA N1
STA N2

N1 RESW 1

N2 RESW 1

Macro expansion

e Macro definition statements have been deleted since they are no longer required after the macros
are expanded. Each macro invocation statement has been expanded into the statements that form
the body of the macro with the arguments from the macro invocation is substituted for the
parameters in the macro definition. Macro invocation statement is included as a comment line in
the expanded program.

e After macroprocessing the expanded file can be used as input to the assembler.
e Differences between macro and subroutine: The statements that form the expansion of a macro are

generated and (assembled) each time the macro is invoked. Statements in a subroutine appear only
once, regardless of how many time the subroutine is called.

[Type text]

512 Macro Processor Algorithm and Data
Structure:

It is easy to design a two pass macro processor in which all macro definitions are processed during
the first pass and all macro invocation statements are expanded during the second pass.

But such a two pass macro processor would not allow the body of one macro instruction to contain
definitions of other macros.

1 MACRCS MACRO {Defines SIC standard version macros}
2 RDBUFF MACRO ETNDEV, &BUFADR , &RECLTH
{8IC standard version}
3 MEND {End of RIDBUFF}
4 WRBUFF MACRO &OUTDEV, &BUFADR, &RECLTH
{8IC standard version}
5 MEND {End of WRBUFF}
6 MEND {End of MACROS}
1 MACROX MACRO {Defines SIC/XE macros}
2 RDBUFF MACRO &INDEV, &8BUFADR, &RECT.TH
{SIC/XE version}
3 MEND {End of RDBUFF}
4 WRBUFF MACRO &OUTDEV, &BUFADR, &RECLTH
{STIC/XE wversion}
5 MIEND {End of WRBUFF}
6 MEND (End of MACROX}

(b)
Figure 4.3 Example of the definition of macros within a macro body.
Here defining MACROS does not define RDBUFF and WRBUFF. These definitions are processed
only when an invocation of MACROS is expanded.
A one pass macro processor that can alternate between macro definition and macro expansion is
able to handle these type of macros.

Dept. of CSE, CCE

e There are 3 main data structures:-

DEFTAB- The macro definitions are stored in a definition table(DEFTAB) which contain the
macro definition and the statements that form the macro body. References to the macro
instruction parameters are converted to positional notation.

NAMTAB- Macro names are entered into NAMTAB, which serves as an index to DEFTAB.
For each macro instruction defined , NAMTAB contains pointers to the beginning and end of
the definition in DEFTAB.

ARGTAB- is used during the expansion of the macro invocation. When a macro invocation
statement is recognized the arguments are stored in argument table. As the macro is expanded
arguments from ARGTAB are substituted for the corresponding parameters in the macro body.
Eg

NAMTAB DEFTAB
. .
. []
. .
. / RDBUFF &INDEV,&BUFADR, &RECLTH
RDBUFF | *T"o= CLEAR X
CLEAR A
: CLEAR 8
v +LDT #4096
D =X'?1’
JEQ -3
RD =X'71
ARGTAB COMPR A.8
JEQ 411
1 F1 STCH ?2.X
TIXR T
2| BUFFER ar w19
STX 3
—¥| wmnn
3| LENGTH -

Dept. of CSE, CCE

Macro processor algorithm

begin {macro processcor}
EXPANDING := FALSE
while CPCODE # 'END’ do
begin
GETLINE
PROCESSLINE
end {while}
end {macro processor}

procedure PROCESSLINE
begin
search NAMTAR for OPCODE
if found then
EXPAND
elge if OQOPCODE = 'MACRO’ then
DEFTNE
else write source line to expanded file
end {PROCESSLINE}

Figure 4.5 Algorithm for a one-pass macro processor.

Dept. of CSE, CCE

procedure DEFINE
begin
enter macro name into NAMTAS
enter macro prototype into DEFTAB

LEVEL :=1
while LEVEL > 0 4o
begin
CETLINE
if this is not a comment line then
hegin
substitute positicnal notation for parameters
enter line intc DEFTAR
if OPRCODE = 'MACECQ' then
LEVEL := LEVEL + 1
else 1f OPCODE = "MEND' then
LEVEL := LEVEL - 1
end {if not comment}
end {while}

store in MNAMTAR pointers to beginming and end of definition
end {DEFINE}

procadura ECAND
begin
EEPANDING = TEUIE
get first line of macre definition {prototype) from DEFTAE
set up arguments from macro invocaticn in ARGTABR
write meoro invocation to expanded file as a conmrant
while not ernd of macyro definition 4o
bagin
GETLIHE
FROCESSLINE
end {whilel
EXPANMDING = FALSE
end (EXPLHD

procedure GETLINE

beagin
if BYTRNDING than
bagin
get next line of macrs definitcion from DEFTABR
suostitute argumenls [rom &RGTAE for positional notaticn
end {if}
alae

read next line Lrom input file
end {GEILINE}

Figure 4.5 (contd}

Dept. of CSE, CCE

Procedure DEFINE which is called when the beginning of a macro definition is recognized makes
the appropriate entries in DEFTAB and NAMTAB.

EXPAND is called to set up the argument values in ARGTAB and expand a Macro Invocation statement.
Procedure GETLINE is called to get the next line to be processed either from the DEFTAB or from the
input file .

Handling of macro definition within macro:- When a macro definition is encountered it is entered

in the DEFTAB. The normal approach is to continue entering till MEND is encountered. If there is a
program having a Macro defined within another Macro.While defining in the DEFTAB the very first
MEND is taken as the end of the Macro definition. This does not complete the definition as there is
another outer Macro which completes the definition of Macro as a whole. Therefore the DEFINE
procedure keeps a counter variable LEVEL.Every time a Macro directive is encountered this counter is
incremented by 1. The moment the innermost Macro ends indicated by the directive MEND it starts
decreasing the value of the counter variable by one. The last MEND should make the counter value set

to zero. So when LEVEL becomes zero, the MEND corresponds to the original MACRO directive.

Dept. of CSE, CCE

5.3Machine-independent Macro-Processor Features.

The design of macro processor doesn’t depend on the architecture of the machine. We will be

studying some extended feature for this macro processor. These features are:

e Concatenation of Macro Parameters
e Generation of unique labels
e Conditional Macro Expansion

e Keyword Macro Parameters

5.3.1Concatenation of Macro parameters:

e Most macro processor allows parameters to be concatenated with other character strings.
Suppose that a program contains a series of variables named by the symbols XA1, XA2,
XA3,..., another series of variables named XB1, XB2, XB3,..., etc. If similar processing
is to be performed on each series of labels, the programmer might put this as a macro
instruction.

e The parameter to such a macro instruction could specify the series of variables to be
operated on (A, B, etc.). The macro processor would use this parameter to construct the

symbols required in the macro expansion (XA, XB1, etc.).

Dept. of CSE, CCE

e Suppose that the parameter to such a macro instruction is named &ID. The body of the
macro definition might contain a statement like
= LDA X&ID1

e & s the starting character of the macro instruction; but the end of the parameter is not marked.

So in the case of &ID1, the macro processor could deduce the meaning that was intended.

SUM

LDA
ADD
ADD
S5TA

e |f the macro definition contains &ID and &ID1 as parameters, the situation would be
unavoidably ambiguous.
e Most of the macro processors deal with this problem by providing a special concatenation

operator. In the SIC macro language, this operator is the character —. Thus the statement

LDA X&ID1 can be written as
LDA X&ID—1

1 sUuM MACRO &ID

2 LDA X&ID— 1

3 ADD X&ID— 2

4 ADD X&ID— 3

5 STA X&ID— S

5] MEND
A SUM BETA
A1 LDA XBEATA1
XA2 ADD XBEATA2
YA3 ADD XBEATA3
YAS STA XBEATAS

Dept. of CSE, CCE

The above figure shows a macro definition that uses the concatenation operator as previously
described. The statement SUM A and SUM BETA shows the invocation statements and the

corresponding macro expansion.

5.3.2Generation of Unique Labels

it is not possible to use labels for the instructions in the macro definition, since every expansion

of macro would include the label repeatedly which is not allowed by the assembler.

We can use the technique of generating unique labels for every macro invocation and

expansion.

During macro expansion each $ will be replaced with $XX, where xx is a two- character

alphanumeric counter of the number of macro instructions expansion.

For example,

This allows 1296 macro expansions in a single program.

XX =AA, AB, AC...

The following program shows the macro definition with labels to the instruction.

25
30
35
40
45
50
55
60
65
70
75
80
90

RDBUFF

$LOOP

SEXIT

MACRO &INDEV, &BUFADR, &RECLTH

CLEAR X
CLEAR A
CLEAR S

+LDT #4096
D =X &INDEV’
JEQ $LOOP
RD =X"&INDEV'
COMPR A, S
JEQ $EXIT
STCH &BUFADR, X
TIXR $LOOP
STX &RECLTH
MEND

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH
TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTI REG A
TEST FOR END OF RECORD
EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER
HAS BEEN REACHED

SAVE RECORD LENGTH

The following figure shows the macro invocation and expansion first time.

RDBUFF F1, BUFFER, LENGTH

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

40 CLEAR 5

45 +LDT #4096 SET MAXIMUM RECORD LENGTH
50 SAALOOP TD =X"F1° TEST INPUT DEVICE

55 JEQ $AALOOP LOOP UNTIL READY

60 RD =X'F1° READ CHARACTER INTI REG A
65 COMPR A S TEST FOR END OF RECORD

70 JEQ SAAEXIT EXIT LOOP IF EOR

75 STCH BUFFER, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 LT $AALOOP HAS BEEN REACHED

a0 SAAEXIT STX LENGTH SAVE RECORD LENGTH

e If the macro is invoked second time the labels may be expanded as SABLOOP $ABEXIT.

5.3.3Conditional Macro Expansion
o IFELSE
o WHILE loop
e We can modify the sequence of statements generated for a macro expansion depending on
conditions.
IF ELSE ENDIF structure
e Consider the following example.

25 KDBIIFF MACRL) SINDEY , &EUFADR, ARECTTH, &EOR, &MAXTTH
26 IF [&E0OR NE f*)
T EFORCE ZET 1
ZB HRLOLE
3 CLEALR X CLEAR LOOP COUNTER
35 CLEAR y
38 Ix [&ECRCE B 1)
A LDCH =R AFOR SET EOR CHARACTER
42 R 2,5
43 EMNDIF
44 IF {EMAXITH B **)
4t +L.0T 4056 SEDN Max LEMNGIH = 4096
16 FT.EF
a7 +L.0OT FaEMLNTTH Spr MAX MM EECORD LEMGTH
48 EMLDIF
50 2LO0P 11 =X EINCEY " TEST TWNFUT TEVICE
Ll JEQ SLOOP LOOP UNTIL =esI10Y
a0 R} =X &THIEV T BEAD CHARACTER INTO REG A
63 I [&EORCK ED 1)
1S COMEPER A S TEST PFOR IND OF RECORD:
7O JED fY T AL EX1T LLOP IF EDE
T3 EMNDIF
75 STCUH EBEUFADE, X STORE CHARACTER IN BUFFER
20 TIXE T LOOEP UNLESS MEXIMUM ENGETH
g5 JLT ZLIOCP HAS ZBEEMN REACIIED
=H] SEXIT = e ERKCLTH SAVE RECORT TFRENGTH
95 MERND
{a}

EDBUEF F3,BUF,RECL, 04,2048
30 CLEAR X CLEAR LOOP COUNTER
35 CLEAR A
40 LDCH =x'04r SET EOR CHARACTER
42 RMC &, 5
47 +LOT #2048 SET MAXIMIIM RECORD LENGTH
50 SARTOOP D =X'F3" TEST INPUT DEVICE
55 JEQ SART.COP LOOP UNTIL READY
&l RD =X'F3’ FEAD CHARACTER INTO REGZ A
65 COMPR AS TEST FOR END OF RECORD
70 JEQ SALENIT EXIT LCOP IF ECR
75 STCH BUE, X STORE CHARACTER IN BUFFER
80 TIXER T LOOF UMNLESS MAXIMUM LENGTH
g5 JLT SART.O0P HAS BEEN REACHED
@0 SAMEXIT STX RECL SAVE RECCOED LENGTH

(b)
Figure 4.8 Use of macro-time conditional statements.

e Here the definition of RDBUFF has two additional parameters. &EOR(end of record)
&MAXLTH(maximum length of the record that can be read)

e The macro processor directive SET — The statement assigns a value 1 to &EORCK and
&EORCK is known as macrotime variable. A macrotime variable is used to store working
values during the macro expansion. Any symbol that begins with & and that is not a macro
instruction parameter is assumed to be a macro time variable. All such variables are initialized to
a value 0.

e Implementation of Conditional macro expansion- Macro processor maintains a symbol table that
contains the values of all macrotime variables used. Entries in this table are made when SET

statements are processed. The table is used to look up the current value of the variable.

e Testing of Boolean expression in IF statement occurs at the time macros are expanded. By the
time the program is assembled all such decisions are made and conditional macro instruction
directives are removed.

e |F statements are different from COMPR which test data values during program expansion.

Looping-WHILE

e Consider the following example.

25 RDBUFF MACRO &INDEV ., &BUFADR, &RECLTH, &EOR
27 LECRCT SET FMITEMS { £HEOR)
30 CLEAR X CLEAR LOOCE COUNTER
35 CLERR A
45 +LDT #4096 SET MAX LEMGIH = 409§
50 SLOOP D =X ' EINDEV’ TEST INPUT DEVICE
55 JEQ SLOOP LOCE UNTIL READY
60 RD =X ' &EINDEV’ READ CHARACTER INTO REG A
63 &CTR SET 1
64 WHILE {&CTR LE &EORCT)
65 coMe =X ' 0000&EOR [&CTR] *
70 JEQ SEXIT
71 &CTR seT &CTR+1
73 BN
75 STCH ABUFADR, X STORE CHARACTER IN BUFFER
B0 TIXR T LOOP UNLESS MAXIMUM LENGTH
25 JLT SLOOP HAS BEEN REACHED
a0 SEXIT STH &RECLTH SAVE RECORD LENGTH
100 MEND
(a}
FLEUEFF ¥2,BUFFER, LENGTH, (00,03, 04}
30 CLEAR = CLEAE LOOP COUNTER
35 CLEAR A
A5 +LT £409¢ CET MAX LENGTH = 4096
RO SARTOOFP TR =¥'F2C TEST INPUT DEVICE
55 JEQ SAATOOP LOOP UNTIL READNY
60 ED =X"F2’ EEAD CHARACTER INTO EREG A
55 COMP =X 000000
7 JEQ SHARXTT
65 COoMP =X'000003"
i JEQ SAAEXIT
6% COMP =¥ 000004
7 JEG LARFXIT
75 STCH BUFFEE., X STORE CHARACTEE IN BUFFER
a0 TIXER T LOOP TINLESS MAXTIMIM LEMNGTH
85 JLT SARTO0P HAS BEEN EEACHED
30 SARFXIT STX LENGTH SAVE RECORD LEMNGTH

(b}

Here the programmer can specify a list of end of record characters.

In the macro invocation statement there is a list(00,03,04) corresponding to the parameter &EOR.
Any one of these characters is to be considered as end of record.

The WHILE statement specifies that the following lines until the next ENDW are to be generated
repeatedly as long as the condition is true.

The testing of these condition and the looping are done while the macro is being expanded.The
conditions do not contain any runtime values.

%NITEMS is a macroprocessor function that returns as its value the number of members in an
argument list. Here it has the value 3. The value of &CTR is used as a subscript to select the
proper member of the list for each iteration of the loop. &EOR[&CTR] takes the values 00,03,04

Implementation- When a WHILE statement is encountered during a macro expansion the
specified Boolean expression is evaluated , if the value is false the macroprocessor skips ahead in
DEFTAB until it finds the ENDW and then resumes normal macro expansion(not at run time).

5.3.4Keyword Macro Parameters
e All the macro instruction definitions used positional parameters. Parameters and
arguments are matched according to their positions in the macro prototype and the

macro invocation statement.

e The programmer needs to be careful while specifying the arguments. If an argument
is to be omitted the macro invocation statement must contain a null argument

mentioned with two commas.

e Positional parameters are suitable for the macro invocation. But if the macro
invocation has large number of parameters, and if only few of the values need to be
used in a typical invocation, a different type of parameter specification is required.

e Eg: Consider the macro GENER which has 10 parameters, but in a particular
invocation of a macro only the third and nineth parameters are to be specified. If

positional parameters are used the macro invocation will look like

GENER ,, DIRECT,,,,,, 3,
e But using keyword parameters this problem can be solved. We can write
GENER TYPE=DIRECT, CHANNEL=3

25 RIEUFF MACROD &INDEV=F1, &BUFADR=, &RECLTH=, 8ECR=04 , sMAXI.TH=-409&

a6 iy {&zEOR ME '}

a7 &ECRCE SET 1

28 ENDIF

ETH) CLEAR A CLEAR LOOP CCRINTER

5 CTFAR B

g IF I&EQRCE BD 1)

40 LOCH =X'&E(R’ SET ECER THARACTER

42 WD a,5

43 ENDIF

47 +LI0T #&MAXLTH SET MAXIMIM RECCRETD TENGTH
50 SLOCE Uu =X ETNDEY TEST INFUT DEVICE

55 JEZ SLOOP LOOP UNTIL READY

=10 FD =M ETHDEY READ CHARACTER INTD REG A
&3 IF (&EQRCK ED 1)

[COMER A5 TEET HOE END OF RECORD

70 JE) SEXIT EXIT LOOP IF EOR

73 ENDIF

75 S10CH EBIJFALRE, X STORE CHARACTER IN BUFFIR
80 TIHR T LOOP UMLESS MAXIMIM LENGTE
E5 JLT SLoOP HAS BEEM REACHED

a0 SEXIT STH &RECLTH SAVE RECORD TENGTH

35 MEND

RUOEUFF BUFADR=EUFFER, RECLTH=LENGTH

30 CLERR X CLEAR LOOP COUNTER

3G CLERR n

a0 LDCH =H D4 SET ECR CHARACTER

42 RMO A,S

7 +LDr #4094 SET MAXIMUM RECORD LEMETH
50 SAALOOE TD =X'FLl" TEST INPUT DEVICE

RE JED SAMLCOP LOOF UNTIL READY

0 ED =X'F1l’ FEAD CHARACTER THNTO RES A
ah COMER. b5 TEST FORE END OF RECORD

Fi] JED SRLEXIT EXFT LOOP IF EOR

75 STCH BUFFEER, X STORE (HARACTER TN BUTFFER
a0 TIXR iy 0P UNLESS MAXIMUM LENGTH
85 JLT SAALODT HAS BEEM REACHED

90 SARENTIT ST LEMNGTH SKVE RECORD LENGTH

(b)

Figure 4.10 Use of keyword parameters in macro instructions.

Keyword parameters

Each argument value is written with a keyword that names the corresponding

parameter.

Arguments may appear in any order.

Null arguments no longer need to be used.

It is easier to read and much less error-prone than the positional method.

5.4 Macro Processor Design Options

5.4.1Recursive Macro Expansion

e We have seen an example of the definition of one macro instruction by another. But we have

not dealt with the invocation of one macro by another. The following example shows the

invocation of one macro by another macro.

10
15
20
25
30
35
40
45
50
65
70
75
80
85
90
95

RDBUFF MACRO RBUFADR, &RECLTH, &INDEV

MACRO TO READ RECORD INTO BUFFER

CLEAR X
CLEAR A
CLEAR S

+LDT #4096
$LOOP RDCHAR &INDEV

COMPR A, S

JEQ BEXIT

STCH 2BUFADR, X

TIXR T

LT $LOOP
SEXIT STX &RECLTH

MEND

CLEAR LOOP COUNTER

SET MAXIMUN RECORD LENGTH
READ CHARACTER INTO REG A
TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER
LOOP UNLESS MAXIMUN LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

5

10
15
20
25
30
35
40

RDCHAR MACRO &IN

MACROTO READ CHARACTER INTO REGISTER A

D =X"&IN’
JEQ 3
RD =X &IN’
MEND

Problem of Recursive Expansion

e Previous macro processor design cannot handle such kind of recursive macro

The procedure EXPAND would be called when the macro was recognized. The arguments from the

invocation and expansion

o The procedure EXPAND would be called recursively, thus the invocation
arguments in the ARGTAB will be overwritten.

o The Boolean variable EXPANDING would be set to FALSE when the “inner”
macro expansion is finished, i.e., the macro process would forget that it had

been in the middle of expanding an “outer” macro.

TEST INPUT DEVICE
LOOP UNTIL READY
READ CHARACTER

macro invocation would be entered into ARGTAB as follows:

The Boolean variable EXPANDING would be set to TRUE, and expansion of the macro
invocation statement would begin. The processing would proceed normally until statement
invoking RDCHAR is processed. This time, ARGTAB would look like

Parame Value
ter
1 BUFFE
R
2 LENG
TH
3 F1
4 (unused
)

Paramet

Value

er

2 (Unuse

At the expansion, when the end of RDCHAR is recognized, EXPANDING would be
set to FALSE. Thus the macro processor would ‘forget’ that it had been in the middle of
expanding a macro when it encountered the RDCHAR statement. In addition, the arguments
from the original macro invocation (RDBUFF) would be lost because the value in ARGTAB

was overwritten with the arguments from the invocation of RDCHAR.

e Solutions
o Write the macro processor in a programming language that allows recursive
calls, thus local variables will be retained.
o If you are writing in a language without recursion support, use a stack to take
care of pushing and popping local variables and return addresses.

5.4.2General-Purpose Macro Processors

e Macro processors that do not dependent on any particular programming language,
but can be used with a variety of different languages
® Pros

o Programmers do not need to learn many macro languages.

o Although its development costs are somewhat greater than those for a
language specific macro processor, this expense does not need to be repeated
for each language, thus save substantial overall cost.

e Cons
o Large number of details must be dealt with in a real programming language
= Situations in which normal macro parameter substitution should not
occur, e.g., comments.

= Facilities for grouping together terms, expressions, or statements. Eg: some
languages use begin and end . Some use { and }

= Tokens, e.g., identifiers, constants, operators, keywords

= Syntax used for macro definition and macro invocation statement is
different.

5.4.3Macro Processing within Language Translators

e The macro processors we discussed are called “Preprocessors”.
o Process macro definitions
o Expand macro invocations
o Produce an expanded version of the source program, which is then used as input
to an assembler or compiler
e You may also combine the macro processing functions with the language translator:
o Line-by-line macro processor
o Integrated macro processor

Line-by-Line Macro Processor

e Used as a sort of input routine for the assembler or compiler
o Read source program
o Process macro definitions and expand macro invocations
o Pass output lines to the assembler or compiler
e Benefits
o Avoid making an extra pass over the source program.
o Data structures required by the macro processor and the language translator can be
combined (e.g., OPTAB and NAMTAB)

o Utility subroutines can be used by both macro processor and the language
translator.

= Scanning input lines
= Searching tables
= Data format conversion

o Itis easier to give diagnostic messages related to the source statements

Integrated Macro Processor
e An integrated macro processor can potentially make use of any information about the source
program that is extracted by the language translator.

o Ex (blanks are not significant in FORTRAN)
= DO1001=1,20
e a DO statement
= DO1001=1
e An assignment statement
e DO100I: variable (blanks are not significant in FORTRAN)

An integrated macro processor can support macro instructions that depend upon the
context in which they occur.

Disadvantages- They must be specially designed and written to work with a particular
implementation of an assembler or compiler.. Cost of development is high.

EDITORS AND DEBUGGING SYSTEMS

An Interactive text editor has become an important part of almost any computing environment.
Text editor acts as a primary interface to the computer for all type of “knowledge workers” as

they compose, organize, study, and manipulate computer-based information.

An interactive debugging system provides programmers with facilities that aid in
testing and debugging of programs. Many such systems are available during these days. Our
discussion is broad in scope, giving the overview of interactive debugging systems — not
specific to any particular existing system.

5.1 Text Editors:

e An Interactive text editor has become an important part of almost any computing environment.
Text editor acts as a primary interface to the computer for all type of “knowledge workers” as
they compose, organize, study, and manipulate computer- based information.

e A text editor allows you to edit a text file (create, modify etc...). For example the Interactive
text editors on Windows OS - Notepad, WordPad, Microsoft Word, and text editors on UNIX
OS - vi, emacs, jed, pico.

e Normally, the common editing features associated with text editors are, Moving the cursor,
Deleting, Replacing, Pasting, Searching, Searching and replacing, Saving and loading, and,

Miscellaneous(e.g. quitting).

5.1.1 Overview of the editing process

e An interactive editor is a computer program that allows a user to create and revise a target
document. Document includes objects such as computer diagrams, text, equations tables,
diagrams, line art, and photographs. In text editors, character strings are the primary elements
of the target text.

Document-editing process in an interactive user-computer dialogue has four tasks:
1) Select the part of the target document to be viewed and manipulated
2) Determine how to format this view on-line and how to display it
3) Specify and execute operations that modify the target document
4) Update the view appropriately

The above task involves traveling, filtering and formatting.

o Traveling — To locate the area of interest. This is done by operations such

as next screenful, bottom and find pattern.
o Filtering- extracts the relevant subset of the target document.

o Formatting- How the result of filtering will be seen as a visible

representation(the view) on a display screen.

o Editing- The target document is created or altered with a set of operations
such as insert, delete, replace, move and copy.

There are two types of editors. Manuscript-oriented editor and program oriented editors.
Manuscript-oriented editor is associated with characters, words, lines, sentences and
paragraphs. Program-oriented editors are associated with identifiers, keywords, statements.
User wish — what he wants — formatted.

So in overall the user might travel to the end of the document. A screenful of text would be
filtered, this segment would be formatted, and the view would be displayed on an output

device. The user could then edit the view.

5.1.2User Interface:

Conceptual model of the editing system provides an easily understood abstraction of the
target document and its elements. For example, Line editors — simulated the world of the
key punch — 80 characters, single line or an integral number of lines, Screen editors —
Document is represented as a quarter-plane of text lines, unbounded both down and to the
right.

The user interface is concerned with, the input devices, the output devices and, the
interaction language. The input devices are used to enter elements of text being edited, to

enter commands. The output devices, lets the user view the elements being edited and the

results of the editing operations and, the interaction language provides communication with
the editor.

e Input Devices are divided into three categories:

o text devices- are type writer like key boards on which a user presses and releases
keys sending a unique code for each key.

o button or choice devices- generate an interrupt causing an invocation of an
associated application program action. They include a set of function keys. Buttons
can be simulated in software.

o Locator devices — are two dimensional analog to digital converters that position a
cursor symbol on the screen by observing the user’s movement of the device. Eg:
mouse, data tablet. Returns the coordinates of the position of the device. Text
devices with arrow keys can be used as locator devices . Arrow shows left, right ,
up or down.

o Voice input devices- Translates spoken words to their textual equivalent.

e Output Devices lets the user view the elements being edited and the results of the editing
operations. CRT terminals use hardware assistance for such features as moving the cursor ,
inserting and deleting characters and lines etc.

e The interaction language is one of the common types.

o Typing or text command oriented- the user communicates with the editor by
typing text strings both for command names and for operands.These strings are sent
to the editor and echoed to the output device.This requires the user to remember the
commands.

o Function key oriented- In this each command is associated with a marked key on
the user’s keyboard.

o Menu oriented systems- A menu is a multiple choice set of text strings or icons
which are graphic symbols that represent object or operations. The user can perform
actions by selecting items from the menu. Some systems have the most used
functions on a main command menu and have secondary menus to handle the less

frequently used functions.

5.1.3Editor Structure:

Most text editors have a structure similar to that shown in the following figure. That is most

text editors have a structure similar to shown in the figure regardless of features and the

computers

Command language Processor accepts command, uses semantic routines — performs

functions such as editing and viewing. The semantic routines involve traveling, editing,

viewing and display functions.

Main
memory

Editing > 'id“inq ‘
component | uffer Editing
f L ___ | fiter
/
,{ Traveling ﬁ ————————
| component —————————
/
ingut Command ——_————— N
language | _ : Viewing
processor| Viewing Viewing | filter
\ component buffer
\
\
\
\
OQutput _
_ devices Display |
D component [*
_______________ Control
Data Typical Editor Structure

aging
Routines¢—T;

File
system

e The command language processor accepts input from the user’s input devices and analyses

the tokens and syntactic structure of the commands. That is, it function like lexical and syntactic

phases of a compiler. It invokes the semantic routines directly. The command language

processor also produces an intermediate representation of the desired editing operations. This

representation is decoded by an interpreter that invokes the appropriate semantic routines.

e Editing Component - In editing a document, the start of the area to be edited is determined by
the current editing pointer maintained by the editing component. Editing component is a
collection of modules dealing with editing tasks. Current editing pointer can be set or reset due

to next paragraph, next screen, cut paragraph, paste paragraph etc..,.

e Travelling component — performs the setting of the current editing and viewing pointers and
thus determines the point at which the viewing/editing filtering begins.

e Editing filter- When the user issues an editing command the editing component invokes the
editing filter. This component filters the document to generate a new editing buffer based on

the current editing pointer as well as on the editing filter parameters.

e Filtering consists of selection of continuous characters beginning at the current point.

e Viewing component- thee start of the area to be viewed is determined by the viewing pointer.
This pointer is maintained by the viewing component. When the display need to be updated the
viewing component invokes the viewing filter. This component filters the document to

generate a new viewing buffer.

e Display component- The viewing buffer is then passed to the display component which

produces a display by mapping the buffer to a rectangular subset of the screen called window.

e The editing and viewing buffers can be independent or overlapped.

e The mapping of viewing buffer to window is accomplished by two components.

1. Viewing component- formulates an ideal view

2. Display component — takes this ideal view from viewing component and maps it

to the output device.

Simple relationship
between editing and
viewing buffers
e The components
of the editor deal
with a user
document on

two levels: In
main memory and

in the disk file system. Loading an entire document into main memory may be infeasible — only
part is loaded — demand paging is used — uses editor paging routines.

e Documents may not be stored sequentially as a string of characters. Uses separate editor data
structure that allows addition, deletion, and modification with a minimum of 1/0 and character
movement.

e Many editors use terminal control database. They can call terminal independent library routines
such as scroll down, or read cursor positions.

e Types of editors based on computing environment: Editors function in three basic types of computing

environments:

1. Time sharing
2. Stand-alone
3. Distributed.
Each type of environment imposes some constraints on the design of an editor.

In time sharing environment, editor must function swiftly within the context of the load on the
computer’s processor, memory and I/O devices.

In stand-alone environment, editors on stand-alone system are built with all the functions to
carry out editing and viewing operations — The help of the OS may also be taken to carry out
some tasks like demand paging.

In distributed environment, editor has both functions of stand-alone editor; to run independently

on each user’s machine and like a time sharing editor, contend for shared resources such as files.

Interactive Debuqgging Systems:

An interactive debugging system provides programmers with facilities that aid in testing and
debugging of programs. Many such systems are available during these days. Our discussion is
broad in scope, giving the overview of interactive debugging systems — not specific to any

particular existing system.

Here we discuss
- Introducing important functions and capabilities of IDS
- Relationship of IDS to other parts of the system

- Debugging methods

Debugging Functions and Capabilities:

One important requirement of any IDS is unit test functions specified by the programmer.
Such functions deal with execution sequencing , which is the observation and control of the
flow of program execution.Eg: The program may be suspended after a fixed number of
instructions are executed. The programmer can define break points. After the program is
suspended debugging commands can be used to diagnose errors.

A Debugging system should also provide functions such as tracing and trace back

e Tracing can be used to track the flow of execution logic and data modifications. The control
flow can be traced at different levels of detail — procedure, branch, individual instruction, and

SO on.

e Trace back can show the path by which the current statement in the program was reached. It
can also show which statements have modified a given variable or parameter. The statements

are displayed rather than as hexadecimal displacements.

e Program-Display capabilities. A debugger should have good program-display capabilities.

o Program being debugged should be displayed completely with statement numbers.

o The program may be displayed as originally written or with macro expansion.

o Keeping track of any changes made to the programs during the debugging session.
Support for symbolically displaying or modifying the contents of any of the variables
and constants in the program. Resume execution — after these changes.

e A debugging system should consider the language in which the program being debugged is
written. A single debugger — many programming languages — language independent. The
debugger- a specific programming language— language dependent.

e The debugging system should be able to deal with optimized code. Many optimizations
involve rearrangement of code in the program.Eg: Separate loops can be combined into single
loop.

e Storage of variables- When a program is translated the compiler assigns a home location in
memory for each variables. Variable values can be temporarily held in registers to improve
speed of access. If a user changes the value of a variable in home location while debugging
the modified value might not be used by the program.

e The debugging of optimized code requires cooperation from optimized compiler.

Relationship with Other Parts of the System:

e The important requirement for an interactive debugger is that it always be available.
Must appear as part of the run-time environment and an integral part of the system.

e When an error is discovered, immediate debugging must be possible. The debugger

must communicate and cooperate with other operating system components such as
interactive subsystems.

e Debugging is more important at production time than it is at application-development
time. When an application fails during a production run, work dependent on that
application stops.

e The debugger must also exist in a way that is consistent with the security and
integrity components of the system.

e The debugger must coordinate its activities with those of existing and future language
compilers and interpreters.

Debugging Methods

1. Debugging by Induction
2. Debugging by Deduction
3. Debugging by Backtracking

Debugging by Induction

e In induction one proceeds from the particulars to the whole.ie, By starting with the symptoms of
the error in the result of one or more test cases and looking for relationships among the symptoms.

1. Locate the pertinent data: Consider all the available data or symptoms about the problems

2. Organise the data: Pertinent data is structured to allow one to observe patterns of particular
importance and search for contradictions. One such organization structure can be a table.

3. Devise a hypothesis: In this step study the relationship between the clues and devise using
patterns, one or more hypothesis about the cause o the error.

4. Prove the hypothesis: Prove the reasonableness of the hypothesis before proceeding. A failure
to this, results in the fixing of only one symptom of the problem.

Debugging by Deduction
e |s aprocess of proceeding from general theories or premises to arrive at a conclusion.
1. Enumerate all possible cases- The first step is to develop all causes of the error.
2. Use the data to eliminate possible causes- By careful analysis of data particularly by
looking for contradictions attempt to eliminate all possible causes except one.
3. Refine the remaining hypothesis- The possible causes at this point may be correct. But
refine it to be more specific.

4. Prove the remaining hypothesis.

Debugging by Back Tracking

e For small programs the method of backtracking is more effective to locate errors.

e To use this method start at the place in the program where an incorrect result was produced and go
backwards in the program one step at a time. That is executing the program in reverse order to
derive the values of all variables in the previous step. Then the error can be localized.

Device Driver

A device driver is a particular form of software application that allows one hardware device
(such as a personal computer) to interact with another hardware device (such as a printer). A
device driver may also be called a software driver.

Drivers facilitate communication between an operating system and a peripheral hardware
device. Each driver contains knowledge about a particular hardware device or software
interface that other programs -- including the underlying operating system (OS) -- does not
have.

In the past, device drivers were written for specific operating systems and specific hardware
peripherals. If a peripheral device was not recognized by their computer's OS, the end user
had to locate and manually install the right driver.

Today, most operating systems include a library of plug-n-play drivers that allows peripheral
hardware to connect automatically with an operating system. This approach also has the
advantage of allowing programmers to write high-level application code without needing to
know what hardware their code will run on

https://www.techopedia.com/definition/2252/peripheral-device
https://www.techopedia.com/definition/2252/peripheral-device
https://www.techopedia.com/definition/3413/plug-and-play-pnp

