

JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

 (Approved by AICTE, Affiliated to APJ Abdul Kalam Technological

University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(NBA Accredited)

COURSE MATERIAL

CST 305 SYSTEM SOFTWARE

VISION OF THE INSTITUTION

Jawaharlal College of Engineering and Technology, Mangalam intends to emerge as a centre of excellence

imparting high quality education encompassing professional ethics, teaching and research to the students and

faculty in the fields of Aeronautical, Electronics, Mechanical, Computer Engineering, Civil, Electrical,

Management and other frontier technological areas of knowledge.

 MISSION OF THE INSTITUTION

 To become an ultimate destination for acquiring latest and advanced knowledge in the

multidisciplinary domains.

 To provide high quality education in engineering and technology through innovative teaching-learning

practices, research and consultancy, embedded with professional ethics.

 To promote intellectual curiosity and thirst for acquiring knowledge through outcome-based education.

 To have partnership with industry and reputed institutions to enhance the employability skills of the

students and pedagogical pursuits.

 To leverage technologies to solve the real-life societal problems through community services.

ABOUT THE DEPARTMENT

 Established in: 2008

 Courses offered: B.Tech in Computer Science and Engineering

 Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION

To produce competent professionals with research and innovative skills, by providing them with the most

conducive environment for quality academic and research oriented undergraduate education along with moral

values committed to build a vibrant nation.

DEPARTMENT MISSION

 Provide a learning environment to develop creativity and problem-solving skills in a professional

manner.

 Expose to latest technologies and tools used in the field of computer science.

 Provide a platform to explore the industries to understand the work culture and expectation of an

organization.

 Enhance Industry Institute Interaction program to develop the entrepreneurship skills.

 Develop research interest among students which will impart a better life for the society and the nation.

PROGRAMME EDUCATIONAL OBJECTIVES

Graduates will be able to

 Provide high-quality knowledge in computer science and engineering required for a computer

professional to identify and solve problems in various application domains.

 Persist with the ability in innovative ideas in computer support systems and transmit the knowledge

and skills for research and advanced learning.

 Manifest the motivational capabilities, and turn on a social and economic commitment to community

services.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an

engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems

reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system

components or processes that meet the specified needs with appropriate consideration for the public health and

safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including

design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid
conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT
tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health,
safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal
and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the

engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams,
and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community

and with society at large, such as, being able to comprehend and write effective reports and design documentation,
make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and

management principles and apply these to one’s own work, as a member and leader in a team, to manage projects
and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and

life-long learning in the broadest context of technological change.

COURSE OUTCOMES

CST305.1 C303.1 Distinguish software’s into system and application software categories.

CST305.2 C303.2 Identify standard and extended architectural features of machines.

CST305.3 C303.3 Identify machine dependent features of system software

CST305.4 C303.4 Identify machine independent features of system software.

CST305.5 C303.5
Design algorithms for system software’s and analyse the effect of data structures

and understand the features of device drivers and editing & debugging tools

PROGRAM SPECIFIC OUTCOMES (PSO)

The students will be able to

 Use fundamental knowledge of mathematics to solve problems using suitable analysis methods, data

structure and algorithms.

 Interpret the basic concepts and methods of computer systems and technical specifications to provide

accurate solutions.

 Apply theoretical and practical proficiency with a wide area of programming knowledge, design new

ideas and innovations towards research.

CO PO PSO MAPPING

Note: H-Highly correlated=3, M-Medium correlated=2,L-Less correlated=1

Subject

Code

Course

Code
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CST305.1 C303.1 3 1 - - 2 - - - - - - 2 2 - -

CST305.2 C303.2 3 3 2 - - - - - - - - 2 3

CST305.3 C303.3 2 2 2 - - - - - - - 2 3

CST305.4 C303.4 3 2 - - - - - - - - - 2

CST305.5 C303.5 3 2 2 2 - 2 - - - - - 2 2 3

CS303 C303 2.667 2 2 2 2 2 - - - - - 2 2 3 3

Module-1 (Introduction)

System Software vs Application Software, Different System Software– Assembler, Linker,

Loader, Macro Processor, Text Editor, Debugger, Device Driver, Compiler, Interpreter,

Operating System (Basic Concepts only). SIC & SIC/XE Architecture, addressing modes, SIC

&SIC/XE Instruction set, Assembler Directives.

Module-2 (Assembly language programming and Assemblers)

SIC/XE Programming, Basic Functions of Assembler, Assembler Output Format – Header,

Text and End Records. Assembler Data Structures, Two Pass Assembler Algorithm, Hand

Assembly of SIC/XE Programs.

Module-3 (Assembler Features and Design Options)

Machine Dependent Assembler Features-Instruction Format and Addressing Modes, Program

Relocation. Machine Independent Assembler Features –Literals, Symbol Defining statements,

Expressions, Program Blocks, Control Sections and Program Linking. Assembler Design

Options- One Pass Assembler, Multi Pass Assembler. Implementation Example-MASM

Assembler.

Module-4 (Loader and Linker)

Basic Loader Functions - Design of Absolute Loader, Simple Bootstrap Loader. Machine

Dependent Loader Features- Relocation, Program Linking, Algorithm and Data Structures of

Two Pass Linking Loader. Machine Independent Loader Features -Automatic Library Search,

Loader Options. Loader Design Options.

Module-5 (Macro Preprocessor, Device driver, Text Editor and Debuggers)

Macro Preprocessor - Macro Instruction Definition and Expansion, One pass Macro processor

Algorithm and data structures, Machine Independent Macro Processor Features, Macro

processor design options. Device drivers - Anatomy of a device driver, Character and block

device drivers, General design of device drivers. Text Editors- Overview of Editing, User

Interface, Editor Structure. Debuggers - Debugging Functions and Capabilities, Relationship

with other parts of the system, Debugging Methods- By Induction, Deduction and

Backtracking.

QUESTION BANK

MODULE I
 QUESTION

S

CO KL

1 Define the Functions of an Assembler CO1 K1

2 List any Four Addressing modes of SIC/XE CO1 K1

3 Summarize the instruction formats used in SIC CO1 K2

4 Write the sequence of instructions for SIC/XE to

divide BETA by GAMA and to store integer

quotient in ALPHA reminder in DELTA

CO1 K5

5 Illustrate the SIC/XE architecture, Explaining in
detail data and instruction formats.

CO1 K3

6 Describe the format of Object Program generated
by the Two Pass SIC Assembler Algorithm

CO1 K2

7 Summarize debugger, text editor and device driver. CO1 K2

8 Illustrate the SIC architecture in detail. CO1 K3

9 Differentiate System software and
 application software.

CO1 K4

10 Summarize the instruction formats used in SIC/XE CO1 K2

11 Discuss the SIC/XE memory, registers, data and
instruction formats and addressing modes

CO1 K2

12 Let NUMBERS be an array of 100 words. Write

a sequence of instructions for SIC and SIC/XE to set

all
100 elements of the array to 1.

CO1 K5

MODULE II
1. Define the Functions of an Assembler CO2 K1

2. Describe Program Relocation CO2 K2

3. List Assembler directives in SIC CO2 K1

4. Give the Algorithm for Pass1 of two Pass SIC
Assembler

CO2 K2

5. Describe the format of Object Program generated
by the Two Pass SIC Assembler Algorithm

CO2 K2

6. Give the use of SYMTAB and OPTAB CO2 K2

7 Explain the Algorithm for Pass2 of SIC Assembler CO2 K5

MODULE III
1 Define Literals. CO3 K1

2 With example, write notes on program blocks. CO3 K2

3 Summarize Symbol defining statements in assemblers. CO3 K2

4 Give the purpose of EXTREF and EXTDEF
assembler directives

CO3 K2

5 Write short notes on MASM Assembler CO3 K2

6 Give the structure and purpose of Modification record
and Define record

CO3 K2

7 Explain the concept of single pass assembler with
suitable example

CO3 K5

8 Illustrate control sections and program blocks CO3 K3

9 Explain in detail about Control section and its
different records .

CO3 K5

10 Explain in detail assembler independent features-
literals, symbol defining statements and expressions.

CO3 K2

11 Differentiate control sections and program blocks in
detail and also point out the assembler directives

CO3 K4

12 Explain the external reference handling of an
assembler

CO3 K5

13 Define forward reference. Illustrate the forward
reference handling by a single pass assembler.

CO3 K1&K3

MODULE IV
1 Point out Relocation , Linking and Loading. CO4 K4

2 Write notes on different loader design options CO4 K3

3 State and explain two pass algorithm for a linking
loader.

CO4 K5

4 Write short note on dynamic linking CO4 K3

5 Explain detail about machine dependent features of
loader.

CO4 K2

6 State and explain pass one algorithm for a linking
loader

CO4 K5

7 Write notes in detail about program linking. CO4 K3

8 Explain with example dynamic linking and automatic
library search.

CO4 K2

9 List and explain different loader options CO4 K1 & K2

MODULE V
1 Illustrate about recursive macro expansion. CO5 K3

2 Design an iterative algorithm for a one pass macro
processor

CO5 K5

3 Differentiate between a macro and a subroutine.
Illustrate macro definition and expansion using an
example.

CO5 K4

4 Illustrate about recursive macro expansion. CO5 K3

5 Write note on conditional macro expansion. CO5 K3

6 Illustrate the data structure required for a macro
processor algorithm and explain the format of each.

CO5 K3

7 Illustrate about macro definion and expansion CO5 K3

8 Explain keyword macro parameters and how unique
label generated in a macro
expansion.

CO5 K5

9 Explain the macro processor algorithm CO5 K5

10 Differentiate between character and block device

drivers.

CO5 K4

11 Explain the structure of text editor with the help of a
diagram.

CO5 K5

12 Discuss about device drivers with neat sketch. CO5 K2

13 Explain about debugging and different debugging
techniques.

CO5 K5

14 Differentiate Text editor and debugger CO5 K4

15 Explain the design of driver with diagrammatic
representation.

CO5 K5

16 Describe the function and capabilities of interactive
debugging system.

CO5 K5

17 Explain different debugging methods in detail. What is
a debugger?

CO5 K5

MODULE 1

SOFTWARE

● Set of instructions given to the computer.

● We cannot touch and feel it.

● Developed by writing instructions in programming language.

● Operations of computer are controlled via this.

● If damaged or corrupted, back up copy can be installed again.

● Eg:- Antivirus, Microsoft Office Tools.

HARDWARE

● Physical parts of a computer.

● We can touch and feel it.

● Constructed using physical components.

● Operates under control of software.

● If damaged, can be replaced.

● Eg:- Keyboard, Monitor, Mouse

SOFTWARE vs HARDWARE

SOFTWARE

HARDWARE

1. Collection of instructions that tells

computer what to do

1. Physical elements of computer

2. Divided in to

a. System Software

b. Application Software

2. Categories

a. Input Devices.

b. Output Devices

c. Utility Software c. Storage Devices

3. Should be installed in to computer 3. Once software is loaded these can

be used.

4. Prone to viruses 4. No virus attacks

5. If damaged/ corrupted

reinstallation is possible

5. If damaged, can be replaced.

Eg:- Microsoft Office, Adobe Eg:- Mouse, Monitor, Keyboard

TYPES OF SOFTWARE

1. System Software:

● Contains collection of programs that support operation of computer.

● Helps to run computer hardware and computer system.

● Handles running of computer hardware.

● These are of different types”

a) Operating System

b) Language Translators

i. Compiler

ii. Assembler

iii. Interpreter

iv. Macro Processor

c) Loader

d) Linker

e) Debugger

f) Text Editor

2. Application Software:

● It allows end users to accomplish one or more specific tasks.

● Focus on application or problem to be solved.

Operating System

● Acts as interface between user and system.

● Provide user friendly interface.

● Functions:

a) Process Management

b) Memory Management

c) Resource Management

d) I/O Operations

e) Data Management

f) Provide Security for job.

Language Translators

● Program that takes input program in one language and produces an output in another

language.

I. Compilers

● Translates program in high level language in to machine level language.

● Conversion or translation is taking place by taking program as whole.

● Bridges the semantic gap between language domain and execution domain.

● Perform syntax analysis, semantics analysis and intermediate code generation.

II. Interpreters

● Translates statement of high level language in to machine level language by taking

the program line by line.

● Interpretation cycle includes:

i) Fetch the statement.

ii) Analyze the statement and determine its meaning.

iii) Execute the meaning of statement.

III. Assemblers

● Programmers found it difficult to read or write programs in machine language, so for

convenience they used mnemonic symbols for each instruction which is translated to

machine language.

● Assemblers translate assembly language to machine language.

● Translate mnemonic code to machine language equivalents.

● Assign machine address to symbol table.

Working:

● Find the required information to perform task.

● Analyze and design suitable data structures to hold and manipulate information.

● Find the process or steps needed to gather information and maintain it.

● Determine processing step required to execute each identified task.

COMPILER vs INTERPRETER vs ASSEMBLER

Linker

● Process of collecting and combining various pieces of code and data in to single file

that can be loaded in to memory and executed.

● Linking performed a compile time, when source code is translated to machine code, at

load time, when program is loaded in to memory and executed by loader and at run time

by application programs.

Types:

a) Linking Loader: Performs all linking and relocation operations directly in to main memory

for execution.

b) Linkage Editor: Produce a linked version of program called as load module or executable

image. This load module is written in to file or library for later execution.

c) Dynamic Linker: This linking postpones the linking function until execution time.

Also called as dynamic loading.

Loader

● Utility of an operating system.

● Copies program from a storage device to computer’s main memory.

● They can replace virtual address with real address.

● They are invisible to user.

Debugger

● An Interactive debugging system provides programmers with facilities that aid in

testing and debugging of programs.

● Debugging means locating bugs or faults in program.

● Helps in fixing error.

● Determination of exact nature and location of error in the program.

Device Driver

● It is a software module which manages the communication and control of specific

I/O device on type of device.

● Convert logical requests from the user in to specific commands directed to device itself.

Macro Processor

● Macro is the unit of specification of program generation through expansion.

● Macros are special code fragments that are defined once in the program and used by

calling them from various places within the program.

● Macro processor is a program that copies stream of text from one place to another,

making a systematic set of replacements as it does so.

● They are often embedded in other programs such as assemblers and compilers.

● Before you can use a macro, you must define it explicitly with the `#define' directive.
`#define' is followed by the name of the macro and then the code it should be an
abbreviation for. For example,

#define BUFFER_SIZE 1020

defines a macro named `BUFFER_SIZE' as an abbreviation for the text `1020'

Text Editors

● Program that allows the user to create the source program in the form of text in to the

main memory.

● Creation, edition, deletion, updating of document or files can be done with the help of

text editor.

SIMPLIFIED INSTRUCTIONAL COMPUTER (SIC)

● It is a hypothetical computer that has hardware features which are found in real machines.

● To versions:

a). SIC Standard Model

b). SIC/XE (Extra Equipment)

Machine Dependent features of Software System:

1. Assembler: Instruction format, Addressing mode.

2. Compiler: Registers, Machine Instructions.

3. OS: All resources of computing system.

Machine Independent features of Software

System:

1. General design and logic of assembler.

2. Code optimization in compiler

3. Linking independently assembled subprogram

SIC ARCHITECTURE- STANDARD MODEL

● It has basic addressing, storing most memory addresses in hexadecimal integer format.

● Its machine architecture includes

1. Memory: There are 215 bytes in the computer memory that is 32768 bytes.

2. Register:

⮚ Used as storage locations that perform some functions.

⮚ There are 5 registers each of them is of 24 bits length.

3. Data Formats:

⮚ It supports only the Integer and Character data formats.

⮚ There is no hardware support for floating point numbers.

⮚ Integers stored as 24 bit binary numbers.

⮚ Negative values represented as 2’s complement.

⮚ Character data stored as 8 bit ASCII codes.

4. Instruction Formats:

⮚ All machine instructions in the standard version of SIC have the

following 24 bit format:

⮚ Flag bit x is used to indicate the indexed addressing mode.

5. Addressing mode: 2 Types

a) Direct Addressing Mode: Here flag bit x=0

Target Address= Actual Address

b) Indexed Addressing Mode: Here flag bit x=1

Target Address= Actual Address+Index Register (X) contents

i.e. Target Address= Address+(X)

6. Instruction Set:

a. Data Transfer Instruction: Include instructions that load and store register.

Eg: LDA, STA, LDX, STX

b. Arithmetic Operation Instruction: Arithmetic operations can be done

which involves register A

Eg: ADD, SUB, MUL, DIV, COMPR

c. Conditional Branching Instruction: The conditional jump instruction test the

setting of condition code and jumps.

Eg: JLT, JEQ, JGT

d. Subroutine Call Instruction: Two instructions are provided to perform

subroutine linkage

i) JSUB: To jump

ii) RSUB: To return

e. Input and Output Instruction:

⮚ I/O operations are executed by transferring a single byte each time.

⮚ Target port is specified by last 8 bits of register A.

⮚ Each device is assigned a unique 8 bit code to send and receive data

and control signals.

7. Input and Output:

⮚ Performed by transferring 1 byte at a time to or from right most 8 bits of

register A (Accumulator).

⮚ Test Device (TD) instruction tests whether the addressed device is ready

to send and receive a byte of data.

⮚ Read Data (RD) and Write Data (WD) is used for reading and writing of

data.

8. Data Movement and Storage Definitions:

⮚ LDA, STA, LDX, STX all uses 3 byte word.

⮚ LDCH, STCH are associated with characters which uses 1 byte.

⮚ Storage definitions are:

a. WORD- ONE WORD CONSTANT

b. RESW- ONE WORD VARIABLE

c. BYTE- ONE BYTE CONSTANT

d. RESB- ONE BYTE VARIABLE

SIC/XE ARCHITECTURE- SIC WITH EXTRA EQUIPMENT

● Architecture is similar to standard model with certain additional components

and features.

1. Memory: Maximum memory available on a SIC/XE system is 1MB (220 bytes)

2. Registers: Additional B, S, T and F registers are provided by SIC/XE , in addition to

the registers of SIC.

3. Floating point Data type: There is a 48 bit floating point data type, F*2(e-1024)

4. Instruction format: New set of instruction formats for SIC/XE are as follows:

a. Format 1 (1 Byte): Contains only operation code

Eg: RSUB (Return to Subroutine)

b. Format 2 (2 Bytes): First 8 bits for operation code, next four for register 1 and

following for register 2.

Eg: COMPR A, S (Compare contents of register A and S)

c. Format 3 (3 Bytes) : Here e=0

⮚ First 6 bits contain operation code.

⮚ Next 6 bits contain flags.

⮚ Last 12 bits contain displacement for the address of the operand.

⮚ Flags are in order -n, i, x, b, p, e.

⮚ e indicates instruction format.

⮚ Bits i and n are used for target address calculation

Eg: LDA #3 (Load 3 to Accumulator A)

Format 3 has many cases:

i. If i=0, n=1, word given by target address is fetched and value in word

is taken as address of operand value- Indirect Addressing (Prefix #).

ii. If i=1, n=0, target address is used as operand value.

Also called Immediate Addressing mode (Prefix #)

a) Case 1: Value contained location in word=operand value

Eg: ADD X, [500]

Here word in location 500 is fetched .

It gives address of first operand, second operand is given in indirect

addressing mode.

b) Case 2: Target Address= Operand

Value Eg:- If TA=10, Operand Value

=10

iii. If i=0, n=0 or i=1, n=1 target address is the location of operand.

Also called as Simple Addressing.

TA=location of operand

d. Format 4 (4 bytes): Here e=1

⮚ It is same as format 3 with an extra 2 hex digits for address that

require more than 12 bits to be represented.

5. Addressing mode and Flag bits:

a. Direct (x,b and p All set to 0):

⮚ Operand address goes as it is.

⮚ n and i are both set to the same value, either 0 or 1.

b. Relative (Either b or p equal to 1 and the other one to 0): Address of operand

should be added to the current value stored at the B register (if b=1) or to the

value stored at the PC register (if p=1)

c. Immediate (i=1,n=0): The operand value is already enclosed on the instruction.

d. Indirect (i=0, n=1): The operand value points to an address that holds the address

for operand value.

e. Indexed (x=1):

⮚ Value to be added to the value stored at the register x to obtain real

address of operand.

⮚ Can be combined with any of previous mode except

immediate. Indexing is not possible with immediate or indirect addressing

mode.

Two relative addressing modes are:

i) Base relative addressing mode.

ii) Program counter relative addressing mode.

6. Instruction set:

a. Instruction that load and store new register

‘B’:LDB- Load the register ‘B’ with some

value. Eg: LDBx- Load value of x in to

register B.

b. STB- Store the register ‘B’ content in to some variable.

Eg: STBx- Store register ‘B’ content in to variable x.

ii. Instruction those perform floating point Arithmetic operation

a. ADDF

b. SUBF

c. MULF

d. DIVF

Here F is the floating point register

Eg: ADDF, here register’ B’ contents are added with Accumulator content

and result is left with accumulator.

iii. Instruction that take operand from

Register RMO-Register move

Eg: RMO S,B Register ‘S’ content is moved to ‘B’ register.

iv. Instruction which perform register arithmetic operation

a. ADDR

b. SUBR

c. MULTR

d. DIVR

Eg: ADDR S,B

add value of register B with register Sand store result in register B.

7. Input and Output:

⮚ The SIC/XE supports all the I/O instructions in the standard version.

⮚ There are special I/O channels which are utilized for data transfer when CPU

is involved in another process at same time.

⮚ Channels control associated I/O channels.

⮚ There can be maximum of 16 I/O channels each supporting maximum of 16

devices.RD and WD is used to read and write data from or to specified I/O

devices.

SIC vs SIC/XE

Also refer the pdf (Comparison SIC and SIC XE)

ASSEMBLER DIRECTIVES

● Pseudo instructions.

● Provide instruction to assembler itself

● They are not translated in to machine operation code.

● SIC and SIC/XE has following assemble directives:

START- Specify name and starting address of the

program

END- Indicate end of the source program and specify first executable statement in

program

BYTE- Generate character or hexadecimal constant.

WORD- Generate one word integer constant.

RESB- Reserves the indicated number of bytes for data area.

RESW- Reserve the indicated number of words for data area.

Data movement in SIC and SIC/XE

1. Data Movement in SIC

Note, In SIC:

● RESB and RESW is used for variables

● BYTE and WORD is used for values

● RESB is used for variable for eg: C1

● RESW is used for variables represented using words For eg: FIRST, it is a

variable name represented in form of letter/ word. C can be another

example which uses the assembler directive RESW

● BYTE is used for character values/constants for eg: char Z

● WORD is used for values expressed in word form, for eg: EIGHT represents

value 8 in word form

2. Data Movement in SIC/XE

● Here immediate addressing scheme is used.

Note, In SIX/XE:

● The values are represented with a prefix # and in numerical form , eg: #8

● Character values are represented using their ASCII values, eg: for Z we used

its ASCII value 90

Arithmetic Operations in SIC and SIC/XE

1. In SIC

2. In SIC/XE

Input/ Output Operations in SIC and SIC/XE

1. In SIC

2. In SIC/XE

MODULE -2

ASSEMBLERS-1

2.1 Basic Assembler Functions:

Figure 1

● Figure 2 shows SIC program which contains a main routine that reads records from an input device (F1) and

copies that to an output device (05) . This main routine calls subroutine RDREC to read a record into a buffer

and subroutine WRREC to write the record from the buffer to the output device. Each subroutine must transfer

one byte at a time. The end of each record is marked with a null character(hexa decimal 00). The end of the

file to be copied is indicated by a zero length record. When the end of the file is detected the program writes

EOF on the output device. And terminates by executing RSUB instruction and returns to the OS. Length of

the buffer is 4096 bytes.

SIC Assembler Directive:

● In addition to the machine instructions assembler directives are also used in programs. Assembler

directives are pseudo instructions. They provide instructions to the assembler itself. They are not

translated into machine code.

START – Specify name and starting address for the program.

END – Indicate the end o the source program and(optionally) specify the first executable instruction in

the program.

BYTE – Generate character or hexadecimal constant , occupying as many bytes as needed to represent

the constant.

WORD- Generate one word integer constant.

RESB- Reserve the indicated number of bytes for a data area.

RESW- Reserve the indicated number of words for a data area.

A Simple SIC Assembler

● Figure 3 shows the same program as in figure 2 with the generated object code for each statement.

● The translation of source program to object code requires to accomplish the following basic

functions:

1. Convert mnemonic operation codes to their machine language equivalents. Eg: translate STL to 14.

2. Convert symbolic operands to their equivalent machine addresses. Eg: translate RETADR to 1033

3. Build the machine instructions in the proper format

4. Convert the data constants specified in the source program into their internal machine

representations.- eg: translate EOF to 454F46

5. Write the object program and assembly listing.

● All these functions except the second one can be easily accomplished by sequential processing of

the source program, one line at a time.

● Consider the following:

The instruction(line 10) contains a forward reference, that is a reference to a label that is defined later.

So can not process the statement . So most of the assemblers makes two passes. The first pass scans the

program for labels and assign addresses. The second pass performs the actual translation.

● The assembler must process assembler directives. They are not translated into machine language. But

they provide instructions to assembler itself.

● Finally the assembler must write the generated object code to some output device. The object program

will later be loaded into memory for execution.

Object Program format

● The simple object program contains three types of records: Header record, Text record and end

record.

● The header record contains the starting address and length. Text record contains the translated

instructions and data of the program, together with an indication of the addresses where these

are to be loaded. The end record marks the end of the object program and specifies the address

where the execution is to begin.

The format of each record is as given below.

Header record:

Col 1 H

Col. 2-7 Program name

Col 8-13 Starting address of object program (hexadecimal)

Col 14-19 Length of object program in bytes (hexadecimal)

Text record:

Col. 1 T

Col 2-7. Starting address for object code in this record (hexadecimal)

Col 8-9 Length off object code in this record in bytes (hexadecimal)

Col 10-69 Object code, represented in hexadecimal (2 columns per byte

of object code)

End record:

Col. 1 E

Col 2-7 Address of first executable instruction in object program

(hexadecimal)

● Figure 2.3 shows the object program corresponding to figure 2.2. The ˄symbol

is used to separate the fields.

● The assembler can be designed either as a single pass assembler or as a two pass assembler.

The general description of both passes is as given below:

• Pass 1 (define symbols)

– Assign addresses to all statements in the program

– Save the addresses assigned to all labels for use in Pass 2

– Perform some processing of assembler directives, including those for address

assignment, such as BYTE and RESW etc.

• Pass 2 (assemble instructions and generate object program)

– Assemble instructions (generate opcode and look up addresses)

– Generate data values defined by BYTE, WORD

– Perform processing of assembler directives not done during Pass 1

– Write the object program and the assembly listing

Assembler Algorithms and Data structure

The simple assembler uses two major internal data structures: the operation Code Table (OPTAB)

and the Symbol Table (SYMTAB).

OPTAB:

● It is used to lookup mnemonic operation codes and translates them to their machine language

equivalents. In more complex assemblers the table also contains information about instruction

format and length.

● In pass 1 the OPTAB is used to look up and validate the operation code in the source program.

In pass 2, it is used to translate the operation codes to machine language. In simple SIC machine

this process can be performed in either in pass 1 or in pass 2. But for machine like SIC/XE that

has instructions of different lengths, we must search OPTAB in the first pass to find the

instruction length for incrementing LOCCTR.

● In pass 2 we take the information from OPTAB to tell us which instruction format to use in

assembling the instruction, and any peculiarities of the object code instruction.

● OPTAB is usually organized as a hash table, with mnemonic operation code as the key. The

hash table organization is particularly appropriate, since it provides fast retrieval with a

minimum of searching. Most of the cases the OPTAB is a static table- that is, entries are not

normally added to or deleted from it. In such cases it is possible to design a special hashing

function or other data structure to give optimum performance for the particular set of keys being

stored.

SYMTAB:

● This table includes the name and value for each label in the source program, together with flags

to indicate the error conditions (e.g., if a symbol is defined in two different places).

● During Pass 1: labels are entered into the symbol table along with their assigned address value

as they are encountered. All the symbols address value should get resolved at the pass 1.

● During Pass 2: Symbols used as operands are looked up the symbol table to obtain the address

value to be inserted in the assembled instructions.

● SYMTAB is usually organized as a hash table for efficiency of insertion and retrieval. Since

entries are rarely deleted, efficiency of deletion is the important criteria for optimization.

● Both pass 1 and pass 2 require reading the source program. Apart from this an intermediate file

is created by pass 1 that contains each source statement together with its assigned address, error

indicators, etc. This file is one of the inputs to the pass 2.

LOCCTR:

● Apart from the SYMTAB and OPTAB, this is another important variable which helps in the

assignment of the addresses. LOCCTR is initialized to the beginning address mentioned in the

START statement of the program. After each statement is processed, the length of the assembled

instruction is added to the LOCCTR to make it point to the next instruction. Whenever a label

is encountered in an instruction the LOCCTR value gives the address to be associated with that

label.

The Algorithm for Pass 1:

● The algorithm scans the first statement START and saves the operand field (the

address) as the starting address of the program. Initializes the LOCCTR value to this

address. This line is written to the intermediate line.

● If no operand is mentioned the LOCCTR is initialized to zero. If a label is encountered,

the symbol has to be entered in the symbol table along with its associated address value.

● If the symbol already exists that indicates an entry of the same symbol already exists.

So an error flag is set indicating a duplication of the symbol.

● It next checks for the mnemonic code, it searches for this code in the OPTAB. If found

then the length of the instruction is added to the LOCCTR to make it point to the next

instruction.

● If the opcode is the directive WORD it adds a value 3 to the LOCCTR. If it is RESW,

it needs to add the number of data word to the LOCCTR. If it is BYTE it adds the length

of the constant in bytes to the LOCCTR, if RESB it adds number of bytes.

● If it is END directive then it is the end of the program it finds the length of the program

by evaluating current LOCCTR – the starting address mentioned in the operand field

of the END directive. Each processed line is written to the intermediate file.

The Algorithm for Pass 2:

● Here the first input line is read from

the intermediate file. If the opcode is

START, then this line is directly

written to the list file.

● A header record is written in the

object program which gives the

starting address and the length of the

program (which is calculated during

pass 1). Then the first text record is

initialized. Comment lines are

ignored. In the instruction, for the

opcode the OPTAB is searched to

find the object code.

● If a symbol is there in the operand

field, the symbol table is searched to

get the address value for this which

gets attached to the object code of the

opcode. If the address not found then

zero value is stored as operands

address. An error flag is set

indicating it as undefined. If symbol

itself is not found then store 0 as

operand address and the object code

instruction is assembled.

● If the opcode is BYTE or WORD,

then the constant value is converted

to its equivalent object code(for

example, for character EOF, its

equivalent hexadecimal value

‘454f46’ is stored). If the object code

cannot fit into the current text record,

a new text record is created and the

rest of the instructions object code is

listed. The text records are written to

the object program. Once the whole

program is assemble and when the

END directive is encountered, the

End record is written.

Machine-Dependent Assembler

Features:

In this section we consider the design and

implementation of SIC/XE assembler.

● Instruction formats and addressing modes

● Program relocation.

Instruction formats and Addressing

Modes

1. Translation of Register to Register

instructions

In this the assembler must simply convert

the opcode to machine language and

change each register to its numeric value.

Eg:

 COMPR A, S A004

(The opcode for COMPR is A0 , the

number of register A is 0 and register S is

4.)

2. Translation of Format 4 instructions

This format contains 20 bit address field .

No displacement is calculated.

 Eg:

 CLOOP +JSUB RDREC

4B101036

 Here the opcode for JSUB instruction is

48 and the address of RDREC is 1036. Write

the instruction format and set the bits n, i and

e to 1.

(If neither immediate nor indirect mode is

used set the bits n and i to 1. Format 4 is

identified by the prefix + . If format 4 is not

specified assembler first attempts to translate

the instruction using program counter relative

addressing. If this is not possible, (because the

required displacement is out of range), the

assembler then attempts to use base relative

addressing. If neither form of relative

addressing is applicable and the extended

format is not specified then the instruction can

not be properly assembled. In this case the

assembler must generate an error message.)

3. Translation PC relative instructions

In this format-3 instruction format is used. The

instruction contains the opcode followed by a 12-

bit displacement value. In PC relative addressing

made TA = disp + [PC]

disp = TA –[PC]

Eg:1

Eg: 2

4. Translation of Base relative

instructions

In this format-3 instruction format is

used. The instruction contains the

opcode followed by a 12-bit

displacement value. In Base relative

addressing made TA = disp + [B]

disp = TA –[B]

The displacement calculation process

for base relative addressing is much the

same as for PC relative addressing. In

this the programmer must tell the

assembler what the base register will contain

during execution of the program so that

assembler can compute displacements. This is

done with the assembler directive BASE. For

example, the statement BASE LENGTH

informs the assembler that the base register

will contain the address of LENGTH. The

register B will contain this address until

another BASE statement is encountered.

If the base register has to be used for

another purpose the programmer must use

NOBASE directive to inform the

assembler that the contents of the base

register is not used for addressing.

5. Translation of Immediate addressing

In this no memory reference is involved.

Convert the immediate operand into its

internal representation and insert it into

its internal representation.

Eg:

6. Translation involving indirect

addressing

In this the displacement is computed to

produce the target address.. Then bit n is

set to 1. The example given below is

indirect and PC relative.

Eg:

Program Relocation

● Sometimes it is required to load and

run several programs at the same

time. The system must be able to load

these programs wherever there is

place in the memory. Therefore the

exact starting is not known until the

load time.

● Absolute Program- In this the

address is mentioned during

assembling itself. This is called

Absolute Assembly.

Eg: Consider the instruction:

 101B LDA THREE

 00

102D

● This statement says that the register

A is loaded with the value stored at

location 102D. Suppose it is decided

to load and execute the program at

location 2000 instead of location

1000.

● Then at address 102D the required

value which needs to be loaded in the

register A is no more available. The

address also gets changed relative to

the displacement of the program.

Hence we need to make some changes in

the address portion of the instruction so

that we can load and execute the

program at location 2000.

● Apart from the instruction which will

undergo a change in their operand

address value as the program load

address changes. There exist some

parts in the program which will

remain same regardless of where the

program is being loaded.

● Since assembler will not know actual

location where the program will get

loaded, it cannot make the necessary

changes in the addresses used in the

program. However, the assembler

identifies for the loader those parts of

the program which need

modification.

● An object program that has the

information necessary to perform this

kind of modification is called the

relocatable program.

● The above diagram shows the

concept of relocation. Initially the

program is loaded at location 0000.

The instruction JSUB is loaded at

location 0006.

● The address field of this instruction

contains 01036, which is the address

of the instruction labeled RDREC.

The second figure shows that if the

program is to be loaded at new

location 5000.

● The address of the instruction JSUB

gets modified to new location 6036.

Likewise the third figure shows that

if the program is relocated at location

7420, the JSUB instruction would

need to be changed to 4B108456 that

correspond to the new address of

RDREC.

● The only part of the program that

require modification at load time are

those that specify direct

addresses(format 4 instructions). The

rest of the instructions need not be

modified. The instructions which

doesn’t require modification are the

ones that is not a memory address

(immediate addressing) and PC-

relative, Base-relative instructions.

● For an address label, its address is

assigned relative to the start of the

program (START 0). The assembler

produces a Modification record to

store the starting location and the

length of the address field to be

modified. The command for the

loader must also be a part of the

object program. The Modification

has the following format:

Modification record

Col. 1 M

Col. 2-7 Starting

location of the

address field to

be modified,

relative to the

beginning of

the program

(Hex)

Col. 8-9 Length of the address

field to be modified, in half-bytes (Hex)

One modification record is created

for each address to be modified The

length is stored in half-bytes (4 bits)

The starting location is the location

of the byte containing the leftmost

bits of the address field to be

modified. If the field contains an

odd number of half-bytes, the

starting location begins in the

middle of the first byte.

Eg: Consider the instruction

 CLOOP +JSUB RDREC

4B101036

where RDREC is at the address 1036.

The modification record for this

instruction can be written as

 M00000705

● There is one modification record for

each address field that needs to be

changed when the program is

relocated(ie. For each format 4

instructions in the program).

Module-3

Machine-Dependent Assembler Features:

In this section we consider the design and implementation of SIC/XE assembler.

● Instruction formats and addressing modes

● Program relocation.

Instruction formats and Addressing Modes

1. Translation of Register to Register instructions

In this the assembler must simply convert the opcode to machine language and change each register

to its numeric value.

Eg:

 COMPR A, S A004

(The opcode for COMPR is A0 , the number of register A is 0 and register S is 4.)

2. Translation of Format 4 instructions

This format contains 20 bit address field . No displacement is calculated.

 Eg:

 CLOOP +JSUB RDREC 4B101036

 Here the opcode for JSUB instruction is 48 and the address of RDREC is 1036. Write the instruction

format and set the bits n, i and e to 1.

(If neither immediate nor indirect mode is used set the bits n and i to 1. Format 4 is identified by the

prefix + . If format 4 is not specified assembler first attempts to translate the instruction using program

counter relative addressing. If this is not possible, (because the required displacement is out of range),

the assembler then attempts to use base relative addressing. If neither form of relative addressing is

applicable and the extended format is not specified then the instruction can not be properly assembled.

In this case the assembler must generate an error message.)

3. Translation PC relative instructions

In this format-3 instruction format is used. The instruction contains the opcode followed by a 12-bit displacement

value. In PC relative addressing made TA = disp + [PC]

 disp = TA –[PC]

Eg:1

Eg: 2

4. Translation of Base relative instructions
In this format-3 instruction format is used. The instruction contains the opcode followed by a 12-bit

displacement value. In Base relative addressing made TA = disp + [B]

 disp = TA –[B]

The displacement calculation process for base relative addressing is much the same as for PC relative

addressing. In this the programmer must tell the assembler what the base register will contain during execution

of the program so that assembler can compute displacements. This is done with the assembler directive BASE.

For example, the statement BASE LENGTH informs the assembler that the base register will contain the

address of LENGTH. The register B will contain this address until another BASE statement is encountered.

If the base register has to be used for another purpose the programmer must use NOBASE directive

to inform the assembler that the contents of the base register is not used for addressing.

5. Translation of Immediate addressing

In this no memory reference is involved. Convert the immediate operand into its internal

representation and insert it into its internal representation.

Eg:

6. Translation involving indirect addressing

In this the displacement is computed to produce the target address.. Then bit n is set to 1. The

example given below is indirect and PC relative.

Eg:

Program Relocation

● Sometimes it is required to load and run several programs at the same time. The system must

be able to load these programs wherever there is place in the memory. Therefore the exact

starting is not known until the load time.

● Absolute Program- In this the address is mentioned during assembling itself. This is called

Absolute Assembly.

Eg: Consider the instruction:

 101B LDA THREE 00102D

● This statement says that the register A is loaded with the value stored at location 102D. Suppose

it is decided to load and execute the program at location 2000 instead of location 1000.

● Then at address 102D the required value which needs to be loaded in the register A is no more

available. The address also gets changed relative to the displacement of the program. Hence we

need to make some changes in the address portion of the instruction so that we can load and execute the

program at location 2000.

● Apart from the instruction which will undergo a change in their operand address value as the

program load address changes. There exist some parts in the program which will remain same

regardless of where the program is being loaded.

● Since assembler will not know actual location where the program will get loaded, it cannot make

the necessary changes in the addresses used in the program. However, the assembler identifies

for the loader those parts of the program which need modification.

● An object program that has the information necessary to perform this kind of modification is

called the relocatable program.

● The above diagram shows the concept of relocation. Initially the program is loaded at location

0000. The instruction JSUB is loaded at location 0006.

● The address field of this instruction contains 01036, which is the address of the instruction

labeled RDREC. The second figure shows that if the program is to be loaded at new location

5000.

● The address of the instruction JSUB gets modified to new location 6036. Likewise the third

figure shows that if the program is relocated at location 7420, the JSUB instruction would need

to be changed to 4B108456 that correspond to the new address of RDREC.

● The only part of the program that require modification at load time are those that specify direct

addresses(format 4 instructions). The rest of the instructions need not be modified. The

instructions which doesn’t require modification are the ones that is not a memory address

(immediate addressing) and PC-relative, Base-relative instructions.

● For an address label, its address is assigned relative to the start of the program (START 0). The

assembler produces a Modification record to store the starting location and the length of the

address field to be modified. The command for the loader must also be a part of the object

program. The Modification has the following format:

Modification record

Col. 1 M

Col. 2-7 Starting location of the address field to be modified, relative to the

beginning of the program (Hex)

Col. 8-9 Length of the address field to be modified, in half-bytes (Hex)

One modification record is created for each address to be modified The length is stored in half-

bytes (4 bits) The starting location is the location of the byte containing the leftmost bits of the

address field to be modified. If the field contains an odd number of half-bytes, the starting

location begins in the middle of the first byte.

Eg: Consider the instruction

 CLOOP +JSUB RDREC 4B101036

where RDREC is at the address 1036. The modification record for this instruction can be written

as

 M00000705

● There is one modification record for each address field that needs to be changed when the

program is relocated(ie. For each format 4 instructions in the program).

Machine-Independent features:

These are the features which do not depend on the architecture of the machine. Such features are more

related to software than to machine architecture. These are:

▪ Literals

▪ Symbol defining statements

▪ Expressions

▪ Program blocks

▪ Control sections

Literals:

● It is easy for a programmer to write the value of a constant operand as part of the instruction that

uses it.

● This avoids defining the constant elsewhere in the program and making a label for it. Such an

operand is called a literal because the value is stated literally in the instruction.

● A literal is defined with a prefix = followed by a specification of the literal value.

Example:

 001A ENDFIL LDA =C’EOF’

 -

 -

● The example above shows a 3-byte operand whose value is a character string EOF. The object

code for the instruction is also mentioned. It shows the relative displacement value of the

location where this value is stored. In the example the value is at location (002D) and hence the

displacement value is (010). As another example the given statement below shows a 1-byte

literal with the hexadecimal value ‘05’.

215 1062 WLOOP TD =X’05’ E32011

032010

● The difference between a constant defined as a literal and a constant defined as an

immediate operand- In case of literals the assembler generates the specified value as a constant

at some other memory location. In immediate mode the operand value is assembled as part of

the instruction itself. Example

 0020 LDA #03 010003

● All the literal operands used in a program are gathered together into one or more literal pools.

This is usually placed at the end of the program. The assembly listing of a program containing

literals usually includes a listing of this literal pool, which shows the assigned addresses and the

generated data values.

Eg: 1076 * =X’05’ 05

● In some cases it is placed at some other location in the object program. An assembler directive

LTORG is used. Whenever the LTORG is encountered, it creates a literal pool that contains all

the literal operands used since the beginning of the program. The literal pool definition is done

after LTORG is encountered. It is better to place the literals close to the instructions.

 LTORG

 002D * =C’EOF’ 454F46

● Recognizing Duplicate literals – That is the same literal used in more than one place in a program

and store only one copy of the data value. For example, the literal =X’05’ is used in different

instructions in a program, but only one data area with this value is created.

– Duplicate literals can be identified by comparing character strings. Eg: X’05’

– Otherwise, generated value can be compared. For eg: the literals =C’EOF’ and

=X’454F46’ are identical operand values.

● The value of some literals depends on their location in the program. Literals referring to the current

value of the location counter (denoted by the symbol *) . Such literals are useful for loading base

registers.

Eg: BASE *

 LDB *

Such literal operands will have different values in different places of the program since they hold the

current value of the locaton counter.

● Handling of literals by the assembler - A literal table is created for the literals which are used in

the program. The literal table contains the literal name, operand value and length and the address

assigned to the operand. The literal table is usually created as a hash table using the literal name or

value as the key.

– During Pass-1:The literal encountered is searched in the literal table. If the literal already exists,

no action is taken; if it is not present, the literal is added to the LITTAB (leaving the address

unassigned. When Pass 1 encounters a LTORG statement or the end of the program, the

assembler makes a scan of the literal table. At this time each literal currently in the table is

assigned an address. As addresses are assigned, the location counter is updated to reflect the

number of bytes occupied by each literal.

– During Pass-2:The assembler searches the LITTAB for each literal encountered in the

instruction and replaces it with its equivalent value.

Symbol-Defining Statements:

EQU Statement:

● Most assemblers provide an assembler directive that allows the programmer to define symbols

and specify their values. The directive used for this EQU (Equate). The general form of the

statement is

Symbol EQU value

● This statement defines the given symbol (i.e., entering in the SYMTAB) and assigning to it the

value specified. The value can be a constant or an expression involving constants. One common

usage is to define symbolic names that can be used to improve readability in place of numeric

values. For example , instead of +LDT #4096 we can write

 MAXLEN EQU 4096

+LDT #MAXLEN

● When the assembler encounters EQU statement, it enters the symbol MAXLEN along with its

value in the symbol table. During the assembly of LDT instruction the assembler searches the

SYMTAB for its entry and its equivalent value as the operand in the instruction. The object

code generated is the same for both the options discussed, but is easier to understand. If the

maximum length is changed from 4096 to 1024, it is difficult to change if it is mentioned as an

immediate value wherever required in the instructions. We have to scan the whole program and

make changes wherever 4096 is used. If we mention this value in the instruction through the

symbol defined by EQU, we may not have to search the whole program but change only the

value of MAXLENGTH in the EQU statement (only once).

● Another common usage of EQU statement is for defining values for the general- purpose

registers. The assembler can use the mnemonics for register usage like a-register A , X – index

register and so on. But there are some instructions which requires numbers in place of names in

the instructions. For example in the instruction RMO 0,1 instead of RMO A,X. The programmer

can assign the numerical values to these registers using EQU directive.

A EQU 0

X EQU 1 and so on

These statements will cause the symbols A, X, L… to be entered into the symbol table

with their respective values. An instruction RMO A, X would then be allowed. As another

usage if in a machine that has many general purpose registers named as R1, R2,…, some may

be used as base register, some may be used as accumulator. Their usage may change from one

program to another. In this case we can define these requirement using EQU statements.

BASE EQU R1

INDEX EQU R2

COUNT EQU R3

● One restriction with the usage of EQU is whatever symbol occurs in the right hand side of the

EQU should be predefined. For example, the following statement is not valid:

BETA EQU ALPHA

ALPHA RESW 1

As the symbol ALPHA is assigned to BETA before it is defined. The value of ALPHA is not known.

ORG Statement:

● This directive can be used to indirectly assign values to the symbols. This assembler directive changes

the value in the location counter. The directive is usually called ORG (for origin). Its general format

is:

ORG value

Where value is a constant or an expression involving constants and previously defined symbols.

When this statement is encountered during assembly of a program, the assembler resets its

location counter (LOCCTR) to the specified value. Since the values of symbols used as labels

are taken from LOCCTR, the ORG statement will affect the values of all labels defined until

the next ORG is encountered. ORG is used to control assignment storage in the object program.

● ORG can be useful in label definition. Suppose we need to define a symbol table with the

following structure:

SYMBOL 6 Bytes

VALUE 3 Bytes

FLAG 2 Bytes

The table looks like the one given below.

● The symbol field contains a 6-byte user-defined symbol; VALUE is a one-word representation

of the value assigned to the symbol; FLAG is a 2-byte field specifies symbol type and other

information. The space for the ttable can be reserved by the statement:

STAB RESB 1100

If we want to refer to the entries of the table using indexed addressing, place the offset

value of the desired entry from the beginning of the table in the index register. To refer to the

fields SYMBOL, VALUE, and FLAGS individually, we need to assign the values first as

shown below:

SYMBOL EQU STAB

VALUE EQU STAB+6

FLAGS EQU STAB+9

To retrieve the VALUE field from the table indicated by register X, we can write a statement:

LDA VALUE, X

The same thing can also be done using ORG statement in the following way:

STAB RESB 1100

ORG STAB

SYMBOL RESB 6

VALUE RESW 1

FLAG RESB 2

ORG STAB+11

00

The first statement allocates 1100 bytes of memory assigned to label STAB. In the

second statement the ORG statement initializes the location counter to the value of STAB.

Now the LOCCTR points to STAB. The next three lines assign appropriate memory storage to

each of SYMBOL, VALUE and FLAG symbols. The last ORG statement reinitializes the

LOCCTR to a new value after skipping the required number of memory for the table STAB

(i.e., STAB+1100).

● While using ORG, the symbol occurring in the statement should be predefined as is required in

EQU statement. For example for the sequence of statements below:

 ORG ALPH

A

BYTE1 RE

SB

1

BYTE2 RE

SB

1

BYTE3 RE

SB

1

ORG

ALPHA RE

SB

1

The sequence could not be processed as the symbol used to assign the new location

counter value is not defined. In first pass, as the assembler would not know what value to

assign to ALPHA, the other symbol in the next lines also could not be defined in the symbol

table. This is a kind of problem of the forward reference.

Expressions:

● Assemblers also allow use of expressions in place of operands in the instruction. Each such

expression must be evaluated to generate a single operand value or address. Assemblers

generally arithmetic expressions formed according to the normal rules using arithmetic

operators +, - *, /. Division is usually defined to produce an integer result.

● Individual terms may be constants, user-defined symbols, or special terms. The only special

term used is * (the current value of location counter) which indicates the value of the next

unassigned memory location. Thus the statement

BUFFEND EQU *

Assigns a value to BUFFEND, which is the address of the next byte following the

buffer area. Some values in the object program are relative to the beginning of the program

and some are absolute (independent of the program location, like constants).

● Expressions are classified as either absolute expression or relative expressions , neither absolute

nor relative depending on the type of value they produce.

– Absolute Expressions: The expression that uses only absolute terms is absolute expression.

Absolute expression may contain relative term provided the relative terms occur in pairs

with opposite signs for each pair. None of the relative terms enter into multiplication or

division. Example:

MAXLEN EQU BUFEND-BUFFER

In the above instruction the difference in the expression gives a value that does not

depend on the location of the program and hence gives an absolute value irrespective of the

relocation of the program. The expression can have only absolute terms. Example:

MAXLEN EQU 1000

– Relative Expressions: All the relative terms except one can be paired . The remaining

unpaired relative term must have a positive sign. None of the relative terms must enter into

multiplication or division. A relative term represents some location within the program.

Example:

STAB EQU OPTAB + (BUFEND – BUFFER)

– Neither absolute nor relative: Expressions that are legal are those expressions whose value

remains meaningful when the program is relocated. Expressions that do not meet the conditions for

either absolute or relative are neither absolute nor relative. They are considered as errors.

 Eg: BUFEND + BUFFER, 100-BUFFER, 3*BUFFER

● Handling the type of expressions: to find the type of expression, we must keep track the type

of symbols used. This can be achieved by defining the type in the symbol table against each

of the symbol as shown in the table below:

Program Blocks:

● Program blocks allow the generated machine instructions and data to appear in the object

program in a different order by Separating blocks for storing code, data, stack, and larger data

block.

● Program blocks refer to segments of code that are rearranged within a single object program

unit.

● Assembler Directive USE: indicates which portion of the program belong to the various blocks.

USE [blockname]

● At the beginning, statements are assumed to be part of the unnamed (default) block. If no USE

statements are included, the entire program belongs to this single block. Each program block

may actually contain several separate segments of the source program. Assemblers rearrange

these segments to gather together the pieces of each block and assign address. Separate the

program into blocks in a particular order.Large buffer area is moved to the end of the object

program. Program readability is betterif data areas are placed in the source program close to

the statements that reference them. In the example below three blocks are used :

 Default: executable instructions

CDATA: all data areas that are less in length

CBLKS: all data areas that consists of larger blocks of memory

Example Code

● How the assembler handles program blocks –

Pass 1

– A separate location counter for each block is maintained.

– The location counter for a block is initialized to zero when the block is first started.

– The current value of the location counter is saved when switching to another block.

– The saved value is continued when resuming previous block.

– After pass 1 the symbol table will be having labels with block no along with address.(For

absolute symbol there is no block number.)

– At the end of pass 1 latest value of location counter or each block gives the length of that block.

– Assembler constructs a block table that contains starting addresses and lengths of all blocks

Pass 2

– Code generation during pass2 the assembler needs the address relative to the start of the

program. (not the start of the individual program block). Assembler adds the label address with

its block starting address.

Pass1 algorithm of Program blocks

Pass2 algorithm for program blocks

● Advantage- Separation of programs into blocks has reduced the addressing problem. Since the larger

buffer are is moved to the end of the object program extended format instructions need not be used.

The use of program blocks has achieved the effect of rearranging the source statements without

actually rearranging them. The loader will load the object program at the indicated address.

Fig:Program blocks traced through the assembly and loading processes

Pass1 of program blocks

Pass2 of Program blocks

Control Sections:

● A control section is a part of the program that maintains its identity after assembly; each control

section can be loaded and relocated independently of the others.

● Different control sections are most often used for subroutines or other logical subdivisions. The

programmer can assemble, load, and manipulate each of these control sections separately.

● Because of this, there should be some means for linking control sections together. For example,

instructions in one control section may refer to the data or instructions of other control sections.

● Since control sections are independently loaded and relocated, the assembler is unable to

process these references in the usual way. Such references between different control sections

are called external references.

● The assembler generates the information about each of the external references that will allow

the loader to perform the required linking.

● When a program is written using multiple control sections, the beginning of each of the control

section is indicated by an assembler directive

– assembler directive: CSECT

The syntax

controlsectionname CSECT

– separate location counter for each control section

● Control sections differ from program blocks in that they are handled separately by the

assembler. Symbols that are defined in one control section may not be used directly another

control section; they must be identified as external reference for the loader to handle. The

external references are indicated by two assembler directives:

– EXTDEF (external Definition): It is the statement in a control section, names symbols that are

defined in this section but may be used by other control sections. Control section names do

not need to be named in the EXTREF as they are automatically considered as external symbols.

– EXTREF (external Reference): It names symbols that are used in this section but are defined

in some other control section. The order in which these symbols are listed is not significant.

The assembler must include proper information about the external references in the object

program that will cause the loader to insert the proper value where they are required.

Handling External

Reference Case 1

15 0003 CLOOP +JSUB RDREC 4B100000

● The operand RDREC is an external reference.

o The assembler has no idea where RDREC is

o inserts an address of zero

o can only use extended formatto provide enough room (that is, relative

addressing for external reference is invalid)

● The assembler generates information for each external reference that will allow the

loaderto perform the required linking.

Case 2

On line 107, BUFEND and BUFFER are defined in the same control section and the

expression can be calculated immediately.

107 1000 MAXLEN EQU BUFEND-BUFFER

Case 3

190 0028 MAXLEN WORD BUFEND-BUFFER 000000

● There are two external references in the expression, BUFEND and BUFFER.

● The assembler inserts a value of zero

● passes information to the loader

● Add to this data area the address of BUFEND

● Subtract from this data area the address of BUFFER

Object Code for the example program:

The assembler must also include information in the object program that will cause the loader

to insert the proper value where they are required. The assembler maintains two new record in

the object code and a changed version of modification record.

Define record (EXTDEF)

 Col. 1 D

● Col. 2-7 Name of external symbol defined in this control section

● Col. 8-13 Relative address within this control section (hexadecimal)

● Col.14-73 Repeat information in Col. 2-13 for other external symbols

Refer record (EXTREF)

● Col. 1 R

● Col. 2-7 Name of external symbol referred to in this control section

● Col. 8-73 Name of other external reference symbols

Modification record

● Col. 1 M

● Col. 2-7 Starting address of the field to be modified (hexadecimal)

● Col. 8-9 Length of the field to be modified, in half-bytes (hexadecimal)

● Col.11-16 External symbol whose value is to be added to or subtracted from

the indicated field

A define record gives information about the external symbols that are defined in this control

section, i.e., symbols named by EXTDEF.A refer record lists the symbols that are used as

external references by the control section, i.e., symbols named by EXTREF.

The new items in the modification record specify the modification to be performed:

adding or subtracting the value of some external symbol. The symbol used for modification

may be defined either in this control section or in another section.

The object program is shown below. There is a separate object program for each of the

control sections. In the Define Record and refer record the symbols named in EXTDEF and

EXTREF are included.

● In the case of Define, the record also indicates the relative address of each external symbol

within the control section.For EXTREF symbols, no address information is available. These

symbols are simply named in the Refer record.

● Handling Expressions in Multiple Control Sections: The existence of multiple control

sections that can be relocated independently of one another makes the handling of

expressions complicated. It is required that in an expression that all the relative terms be

paired (for absolute expression), or that all except one be paired (for relative expressions).

● When it comes in a program having multiple control sections then we have an extended

restriction that:

– Both terms in each pair of an expression must be within the same control section

If two terms represent relative locations within the same control section , their

difference is an absolute value (regardless of where the control section is

located.

Legal: BUFEND-BUFFER (both are in the same control section)

– If the terms are located in different control sections, their difference has a value

that is unpredictable.

Illegal: RDREC-COPY (both are of different control section) it is the

difference in the load addresses of the two control sections. This value

depends on the way run-time storage is allocated; it is unlikely to be of

any use.

● How to enforce this restriction

– When an expression involves external references, the assembler cannot

determine whether or not the expression is legal.

– The assembler evaluates all of the terms it can, combines these to form an

initial expression value, and generates Modification records.

– The loader checks the expression for errors and finishes the evaluation.

Assembler Design Options

● There are two design options or the assembler.

– One pass assembler: is used when it is necessary to avoid a second pass over the source program.

– Multipass Assembler: allows an assembler to handle forward references.

One-Pass Assembler

The main problem in designing the assembler using single pass was to resolve forward

references. We can avoid to some extent the forward references by:

● Eliminating forward reference to data items, by defining all the storage reservation

statements at the beginning of the program rather at the end.

● Unfortunately, forward reference to labels on the instructions cannot be avoided. (forward

jumping)

● To provide some provision for handling forward references by prohibiting forward

references to data items.

There are two types of one-pass assemblers:

● One that produces object code directly in memory for immediate execution (Load- and-go

assemblers).

● The other type produces the usual kind of object code for later execution.

Load-and-Go Assembler

● Load-and-go assembler generates their object code in memory for immediate

execution.

● No object program is written out, no loader is needed.

● It is useful in a system with frequent program development and testing

o The efficiency of the assembly process is an important consideration.

● Programs are re-assembled nearly every time they are run; efficiency of the assembly process

is an important consideration.

Forward Reference in One-Pass Assemblers: In load-and-Go assemblers when a forward

reference is encountered :

● Omits the operand address if the symbol has not yet been defined

● Enters this undefined symbol into SYMTAB and indicates that it is undefined

● Adds the address of this operand address to a list of forward references associated with the

SYMTAB entry

● When the definition for the symbol is encountered, scans the reference list and inserts the

address.

● At the end of the program, reports the error if there are still SYMTAB entries indicated

undefined symbols.

● For Load-and-Go assembler

o Search SYMTAB for the symbol named in the END statement and jumps to

this location to begin execution if there is no error

After Scanning line 40 of the program:

40 2021 J` CLOOP 302012

The status is that upto this point the symbol RREC is referred once at location 2013,

ENDFIL at 201F and WRREC at location 201C. None of these symbols are defined. The

figure shows that how the pending definitions along with their addresses are included in the

symbol table.

The status after scanning line 160, which has encountered the definition of RDREC and

ENDFIL is as given below:

One-Pass Assembler that generates object code:

● If the operand contains an undefined symbol, use 0 as the address and write the Text record

to the object program.

● Forward references are entered into lists as in the load-and-go assembler.

● When the definition of a symbol is encountered, the assembler generates another Text record

with the correct operand address of each entry in the reference list.

● When loaded, the incorrect address 0 will be updated by the latter Text record

containing the symbol definition.

Algorithm for one pass assembler

MultiPass Assembler:

● For a two pass assembler, in EQU assembler directive we required that any symbol on the

right hand side be defined previously in the program. This is because o the two pass.If

multipass is possible this restriction can be avoided. Eg:

ALPHA EQU BETA

 BETA EQU DELTA

 DELTA RESW 1

Working of Multipass Assembler:

● A multipass assembler can make as many passes as needed to process the definition of symbols.

● For a forward reference in symbol definition, we store in the SYMTAB:

o The symbol name

o The defining expression

o The number of undefined symbols in the defining expression

● The undefined symbol (marked with a flag *) associated with a list of symbols depend on

this undefined symbol.

● When a symbol is defined, we can recursively evaluate the symbol expressions

depending on the newly defined symbol.

Multi-Pass Assembler Example Program

Multi-Pass Assembler : Example for forward reference in Symbol Defining Statements:

Implementation Example: MASM ASSEMBLER

● Microsoft MASM assembler works for Petium and other ×86 systems.

● In this system memory is considered as segments.

● An MASM assembly language program is written as collection of segments. Each segment is defined

as belonging to a particular class, corresponding to its contents. Commonly used classes are CODE,

DATA, CONST and STACK

● During program execution the segments are addressed via the ×86 segment registers. Code segments

are addressed using register CS and stack segments are addressed using register SS. These segment

registers are automatically set by the system loader when a program is loaded for execution.

● Register CS is set to indicate the segment that contains the starting label specified in the END

statement of the program. Register SS is to indicate the last stack segment processed by the loader.

● Data segments (including constant segments) are normally addressed using DS, ES, or GS.

● By default the assembler assumes that all references to data segments use register DS. This

assumption can be changed by the assembler directive ASSUME.

ASSUME ES: DATASEG2

● Registers DS, ES, FS and GS must be loaded by the program before they can be used to address data

segments. Eg:

MOV AX, DATASEG2

MOV ES, AX

Would set ES to indicae the data segment DATASEG2

● Jump instructions are assembled in two different ways, depending on whether the target of the jump

is in the same code segment (near jump) or in a different code segment(far jump).

● The length of the assembled instruction depends on the operands that are used. An operand that

specifies a memory location may take varying amounts of space in the instruction depending upon

the location o the operand.

● First pass of the ×86 assembler must analyze the operands of an instruction, in addition to looking at

the opcode.

● Segments in a MASM source program can be written in more than one place using the assembler

directive SEGMENT.

● References between segments that are assembled together are automatically handled by the

assembler.

● MASM can also produce an instruction timing listing that shows the number of clock cycles required

to execute each machine instruction.

MODULE- 4

LOADERS AND LINKERS

Introduction

The Source Program written in assembly language or high level language will be

converted to object program, which is in the machine language form for execution. This

conversion either from assembler or from compiler, contains translated instructions and data

values from the source program, or specifies addresses in primary memory where these items

are to be loaded for execution.

This contains the following three processes, and they are,

● Loading - which allocates memory location and brings the object program into

memory for execution - (Loader)

● Linking- which combines two or more separate object programs and supplies the

information needed to allow references between them - (Linker)

● Relocation - which modifies the object program so that it can be loaded at an address

different from the location originally specified - (Relocating Loader)

4. 1 Basic Loader Functions:

● A loader is a system software that performs the loading function. It brings object program into

memory and starts its execution. The role of loader is as shown in the figure.

Type of Loaders

The different types of loaders are, absolute loader, bootstrap loader, relocating loader

(relative loader), and, linking loader. The following sections discuss the functions and design

of all these types of loaders.

4.1.1 Design of Absolute Loader:

● The operation of absolute loader is very simple. The object code is loaded to specified locations

in the memory. At the end the loader jumps to the specified address to begin execution of the

loaded program. Linking and relocation is not done.

● The algorithm for this type of loader is given here.

Begin

read Header record

verify program name and length

read first Text record

while record type is != ‘E’ do

begin

{if object code is in character form, convert into internal representation}

move object code to specified location in memory

read next object program record

end

jump to address specified in End record

end

Algorithm for Absolute loader

● In this all functions are done in a single pass. The header is checked to veriy that the correct program

has been presented for loading. As each text record is read the object code it contains is moved to the

indicated address in memory. When the End record is encountered the loader jumps to the specified

address to begin execution of the loaded program.

● The figure (b) shows the representation of program from figure (a) after loading.

● In the object program each byte of assembled code is given using its hexadecimal representation in

character form.

● In the object program , each byte of assembled code is given using its hexadecimal representation in

character form. For example, the machine opcode for an STL instruction would be represented by

the pair of characters “1” and “4”. When these are read by the loader , they will occupy two bytes of

memory. This opcode must be stored in a single byte with hexa decimal value 14. Thus each pair of

bytes from the object program must be packed together into one byte during loading.

4.1.2 A simple bootstrap loader

● When a computer is first turned on or restarted, a special type of absolute loader, called bootstrap loader is

executed. This bootstrap loads the first program to be run by the computer-- usually an operating system.

The bootstrap itself begins at address 0. It loads the OS starting address 80.

● Working: Consider the bootstrap loader for SIC/XE. The bootstrap loader begins at address 0 in the

memory. It loads the OS starting at address 80. Each byte of object code to be loaded is represented on

device F1 as two hexa decimal digits(Text record) . Object code is loaded to consecutive memory locations

starting at address 80. After all the object code from device F1 has been loaded the bootstrap jumps to the

address 80.

● GETC subroutine – This subroutine reads one character from device F1 and converts from ASCII to hex.

This is done by subtracing 48 if the character is from 0 to 9. For characters A to F subtract 55. Subroutine

jumps to address 80 when end of line is reached.

● Main loop of the bootstrap loader- This keeps the address of the next memory location to be loaded in

register X. GETC is used to read and convert a pair of characters from device F1(represents one byte of

object code). These two hexadecimal values are combined to a single byte by shifting the first one left by 4

bit positions and adding the second to it. The resulting byte is stored at address currently in register X

The algorithm for the bootstrap loader is as follows

4.2Machine-Dependent Loader Features

● Absolute loader is simple and efficient, but the scheme has potential disadvantages. One of

the most disadvantage is the programmer has to specify the actual starting address, from

where the program to be loaded. This does not create difficulty, if one program to run, but

not for several programs. Further it is difficult to use subroutine libraries efficiently.

● This needs the design and implementation of a more complex loader. The loader must

provide program relocation and linking, as well as simple loading functions. This depends

on machine architecture.

4.2.1Relocation(Relocating loader)

● Loaders that allow program relocation are called relocating loaders.

● There are two methods for providing relocation as part of the object program.

▪ Modification record

▪ Bit masking

Modification Record

● A modification record is used to describe each part of the object code that must be changed when

the program is relocated.

● Consider SIC/XE programs, Most of the instructions in this program uses relative or immediate

addressing. So modification not required. Only format 4 instructions require modification

● Each modification record specifies the starting address and length of the field to be modified and

what modification to be performed.(adding the start address).

Algorithm for SIC/XE relocation loader

Bitmasking

● In SIC program relative addressing is not used. So every instruction needs modification. We can

not write modification records for all instructions.

● So relocation bits are used. Each instruction object code is associated with relocation bit.

● Relocation bits for each text record is written together into bitmask after the length using 3

hexadecimal digits.(12 bits)

● Example:

● If the relocation bit is 1 program starting address is to be added to this word.

FFC= 111111111100

SIC relocation loader algorithm

4.2.2Program Linking

● Consider the program of control sections. The program is made up of 3 control sections.

1. Main program

2. Read subroutine

3. Write subroutine

● These control sections could be assembled together or they could be assembled independently

as separate segments of object code after assembly.

● The programmer thinks the three control sections together as a single program. But loader

considers this as separate control sections which are to be linked , relocated and loaded.

● Consider the three separate programs PROGA,PROGB,PROGC. In this example, there are

differences in handling the identical expressions within the 3 programs.

● Consider the references and the corresponding modification records.

● The general approach is assembler evaluate as much as of the expression it can. The remaining

terms are passed on to the loader through modification records.

● Each program contains a list of items(LISTA, LISTB, LISTC). The ends of these lists are marked

by ENDA, ENDB, ENDC. Each program contains the same set of references to these external

symbols. Three of these are instruction operands(REF1,REF2,REF3). and the others are the values

of data words.(REF4 through REF8).

● Consider first reference marked REF1.For PROGA REF1 is simply a reference to a label within the

program. It is assembled in the usual way as PC relative instruction.In PROGB the same operand

refers to an external symbol. The assembler uses an extended format instruction with addess field

set to 00000. Object program for PROGB contains a modification record instructing the loader to

add the value of the symbol LISTA to this address field when the program is linked.This reerence is

handled exactly in the same way for PROGC.

● The figure below shows how the three programs are loaded into memory.

● The values of REF4 through REF8 are same in all the three programs because the same source expression

appeared in each program.

4.2.3 Algorithm and data structures for a linking loader

● Consider the algorithm for a linking and relocating loader.

● We use modification records for both relocating and linking

● This type of loader is found on SIC/XE machines whose relative addressing makes relocation

unnecessary.

● Input- consists of a set of object programs (control sections) that are to be linked together.

● Control sections or programs contain external references whose definition does not appear in the

same program or control section. So linking can not be done until an address is assigned to the

external symbol. So it requires two passes.

▪ Pass1- Assigns addresses to all external symbols.

▪ Pass2- performs the actual loading relocation and linking.

● The main data structure for the linking loader is an external symbol table ESTAB. It is analogous

to SYMTAB. It stores the name and address of each external symbol in the control section. The

table also indicates in which control section the symbol is defined.

● Two variables: PROGADDR- Program starting address in memory where the linked program

should be loaded. Its value is supplied to the loader by the OS.CSADDR-contains the starting

address assigned to the control section currently being scanned by the loader.

● Example: Consider the object programs of PROGA, PROGB, PROGC in fig 3.9 as input to the

loader.

Pass1

● During the first pass the loader is concerned only with Header and Define record types in the

control sections.

● The beginning load address for the linked program(PROGADDR) is obtained from OS. This

becomes the starting address for the first control section(CSADDR).

● The control section name is entered into ESTAB with value given by CSADDR.

● All external symbols appearing in the define record for the control section are also entered into

ESTAB. Their addresses are obtained by adding the value specified in the Define record to

CSADDR.

● When the END record is read the control section length CSLTH which was saved from the Header

record is added to CSADDR. This gives the starting address for the next control section.

● At the end of pass1 , ESTAB contains all external symbols defined in the control sections together

with addresses assigned to each.

● Many loaders include the ability to print a load map that shows these symbols and their addresses.

Output of pass1

Algorithm for pass1 of a linking loader

Pass2

● Performs the actual loading, relocation and linking of the program.

● CSADDR holds the starting address of the control section currently being loaded.

● As each Text record is read , the object code is moved to the specified address (plus the current

value of the CSADDR).

● When a modification record is encountered , the symbol whose value is to be used for

modification is looked up in ESTAB. This value is then added to or subtracted from the indicated

location in memory.

● The last step performed by the loader is transferring of control to the loaded program to begin

execution.

Pass2 Algorithm

● The algorithm can be made more efficient if a slight change is made in the object program

format. that is assigning a reference number to each external symbol referred to in a control

section. This reference number is used in modification records.

4.3 Machine Independent loader features

4.3.1 Automatic Library search

● This feature allows a programmer to use standard subroutines without explicitly including them

in the program to be loaded. The routines are automatically retrieved from library as they are

needed during linking.

● Loader can automatically include routines from a library into the program being loaded.

● The programmer has to only give the subroutine name in the external reference. The routine

will be automatically fetched from the library and linked with the main program.

● Working: Enter symbols from Refer record into the symbol table(ESTAB) . When the

definition is encountered the address is assigned to the symbol. At the end of pass the symbols

in ESTAB remain undefined represent unresolved external references . The loader searches the

library for the routines and process the subroutines as if they are part of the input stream.

● The libraries to be searched by the loader contain assembled or compiled versions of the object

program(sub program). A special file structure is used for libraries. This is known as directory.

This contains the name of the subroutine and a pointer to its address within the file.

4.3.2 Loader Options
● Many loader allow the user to specify options that modify standard processing.

● Loaders have special command language that is used to specify options. Sometimes there is a

separate input file to the loader that contains such control statements. The programmer can even

include loader control statements in the source program.

Some of the loader options are:

1. Selection of alternative sources of input:

INCLUDE programname(libraryname)

This command direct the loader to read the designated object program from a library

and treat it as if it were primary loader input.

2. Command to delete external symbols or entire control section

DELETE csectname

This instruct the loader to delete the control section from the set of programs being

loaded.

3. CHANGE name1,name2

This command causes the external symbol name1 to be changed to name2 wherever it

appears in the object program.

Eg: Consider the object program COPY. Here main program is COPY and the two

subroutines are RDREC and WRREC. Each of these is a separate control section.

Suppose that a set of utility routines are available on the computer system. Two of these

READ and WRITE are are designed to perform the same functions as RDREC and

WRREC. If we want to use READ and WRITE we can give the loader commands

INCLUDE READ(UTLIB)

INCLUDE WRITE(UTLIB)

DELETE RDREC, WRREC

CHANGE RDREC,READ

CHANGE WRREC,WRITE

4. Another common loader option involves the automatic inclusion of library routines to

satisfy external references. Most loaders allow the user to specify alternative libraries to

be searched using a statement such as LIBRARY MYLIB . Such user specified libraries

are normally searched before the standard libraries. This allows the user to use special

versions of the standard routines.

5. Loaders that perform automatic library search to satisfy external reference allows the

user to avoid some references using the command NOCALL. Eg: NOCALL STDDEV,

PLOT. This avoids the overhead of loading and linking the unwanted routines

6. Other options:

▪ No external reference should be resolved.

▪ Specify the output from the loader(load map)

▪ Specify the location at which the execution is to begin

4.4 Loader Design
● Loaders do loading , relocation and linking.

● There are 4 types

▪ Linkage editor- links the program stores it in a file and later loads.

▪ Linking loader- linking during load time

▪ Dynamic linking- linking during execurion time

▪ Bootstrap loader- loads the first program or OS.

4.4.1Differences between Linkage editor and linking loader

Linking loader linkage editor
1. Performs all linking and relocation

operations and loads the linked program

directly into memory for execution

2. A linking loader searches the library and

resolves external references every time the

program is executed.

3. More than one pass required.

1. Produces a linked version of the program

called load module which is written to a

file for later execution

2. Resolution of external references and

library searching are only performed once.

3. The loading can be accomplished in one

pass and no external symbol table

required, much less overhead than a

linking loader.

Advantages of Linkage editors

● Linkage editors can perform many useful functions besides simply preparing an object program

for execution. Consider the example, a program PLANNER that uses a large number of

subroutines. Suppose that one subroutine called PROJECT is changed. After new version of

PROJECT is assembled the linkage editor can be used to replace this subroutine in the linked

version of PLANNER.

INCLUDE PLANNER(PROGLIB)

DELETE PROJECT (delete from existing planner)

INCLUDE PROJECT(NEWLIB) (include new version)

REPLACE PLANNER(PROGLIB)

● Linkage editors can also be used to build packages of subroutines or other control sections that

are generally used together. Eg: For FORTRAN programs there are a number of subroutines that

are used for input and output. They are read and write datablocks, encode and decode data items

etc. Linkage editor can be used to combine these subroutines into a package with the following

commands.

● Linkage editors can also allow the user to specify that external references are not to be resolved

by automatic library search.

4.4.2 Dynamic Linking

● In dynamic linking the linking function is done at execution time. That is a subroutine is loaded

and linked to the rest of the program when it is first called.

● Dynamic linking is often used to allow several executing programs to share one copy of a

subroutine or library. For eg: in C such fuctions are stored in dynamic linking library.. A single

copy of the routines in this library could be loaded into memory and all programs share this.

● In object oriented program dynamic linking is often used for references to software objects.

● Advantage:- Dynamic linking provide the ability to load the routines only when they are required.

For eg: consider the subroutine which diagnose the error in input data during execution. If such

errors are rare these subroutines need not be used.

● Consider the following example of dynamic linking. Here the routines that are to be dynamically

loaded must be called via an OS service request.

Loading and calling a subroutine via dynamic linking

● When the dynamic linking is used the association of an actual address with the symbolic name

of the called routine is done at execution time.. This is known as dynamic binding.

[Type text]

4.3.3 Bootstrap loaders

● Consider how the loader itself is loaded into memory. OS loads the loader. How the OS gets loaded.

● In an idle system if we specify the absolute address the program can be loaded at that location. that is a

mechanism of absolute loader is required.

● One solution to this is to have a built in hardware function that reads a fixed length record from some

device into memory at some fixed location. This device can be selected via console switches. After the

read operation is complete the control is automatically transferred to the address in memory where the

record was stored. This record contains machine instructions that load the absolute program that follows.

● If the loading process requires more instructions than can be read in a single record this first record

causes the reading of others and in turn other records . Hence the name Bootstrap.

[Type text]

MODULE 5

MACRO PROCESSOR

A Macro represents a commonly used group of statements in the source programming

language.

● A macro instruction (macro) is a notational convenience for the programmer

o It allows the programmer to write shorthand version of a program (module

programming)

● The macro processor replaces each macro instruction with the corresponding group of

source language statements (expanding)

o Normally, it performs no analysis of the text it handles.

o It does not concern the meaning of the involved statements during macro

expansion.

● The design of a macro processor generally is machine independent!

● Two new assembler directives are used in macro definition

o MACRO: identify the beginning of a macro definition

o MEND: identify the end of a macro definition

● Prototype for the macro

o Each parameter begins with ‘&’

▪ name MACRO parameters

:

body

:

MEND

o Body: the statements that will be generated as the expansion of the macro.

[Type text]

5.1 Basic Macro Processor Functions:

● Macro Definition and Expansion

● Macro Processor Algorithms and Data structures

5.1.1 Macro Definition and Expansion:

● Consider the example of an SIC/XE program using macro instructions. This program defines

and uses two macro instructions , RDBUFF and WRBUFF.

● The functions and logic of RDBUFF macro are similar to RDREC subroutine.

[Type text]

● Two new assembler directives (Macro and MEND) are used in macro definitions. The keyword

macro identifies the beginning of the macro definition. The symbol in the label field (RDBUFF)

is the name of the macro and entries in the operand field identify the parameters of the macro.

Each parameter begins with the character & which helps in the substitution of parameters

during macro expansion. Following the macro directive are the statements that make up the

body of the macro definition. These are the statements that will be generated as the expansion

of the macro. The MEND directive marks the end of the macro.

● Macro invocation or call is written in the main program. In macro invocation the name of the

macro is followed by the arguments. Output of the macroprocessor is the expanded program.

[Type text]

 Expanded Program

● Another simple example is given below:

● Program with macro

EX1 MACRO &A,&B

 LDA &A

 STA &B

 MEND

SAMPLE START 1000

 EX1 N1,N2

N1 RESW 1

N2 RESW 1

 END

[Type text]

Expanded program

SAMPLE START 1000

. EX1 N1,N2

 LDA N1

 STA N2

N1 RESW 1

N2 RESW 1

Macro expansion

● Macro definition statements have been deleted since they are no longer required after the macros

are expanded. Each macro invocation statement has been expanded into the statements that form

the body of the macro with the arguments from the macro invocation is substituted for the

parameters in the macro definition. Macro invocation statement is included as a comment line in

the expanded program.

● After macroprocessing the expanded file can be used as input to the assembler.

● Differences between macro and subroutine: The statements that form the expansion of a macro are

generated and (assembled) each time the macro is invoked. Statements in a subroutine appear only

once, regardless of how many time the subroutine is called.

 Dept. of CSE, CCE

5.1.2 Macro Processor Algorithm and Data

Structure:

● It is easy to design a two pass macro processor in which all macro definitions are processed during

the first pass and all macro invocation statements are expanded during the second pass.

● But such a two pass macro processor would not allow the body of one macro instruction to contain

definitions of other macros.

● Here defining MACROS does not define RDBUFF and WRBUFF. These definitions are processed

only when an invocation of MACROS is expanded.

● A one pass macro processor that can alternate between macro definition and macro expansion is

able to handle these type of macros.

 Dept. of CSE, CCE

● There are 3 main data structures:-

- DEFTAB- The macro definitions are stored in a definition table(DEFTAB) which contain the

macro definition and the statements that form the macro body. References to the macro

instruction parameters are converted to positional notation.

- NAMTAB- Macro names are entered into NAMTAB, which serves as an index to DEFTAB.

For each macro instruction defined , NAMTAB contains pointers to the beginning and end of

the definition in DEFTAB.

- ARGTAB- is used during the expansion of the macro invocation. When a macro invocation

statement is recognized the arguments are stored in argument table. As the macro is expanded

arguments from ARGTAB are substituted for the corresponding parameters in the macro body.

- Eg

 Dept. of CSE, CCE

Macro processor algorithm

 Dept. of CSE, CCE

 Dept. of CSE, CCE

● Procedure DEFINE which is called when the beginning of a macro definition is recognized makes

the appropriate entries in DEFTAB and NAMTAB.

● EXPAND is called to set up the argument values in ARGTAB and expand a Macro Invocation statement.

● Procedure GETLINE is called to get the next line to be processed either from the DEFTAB or from the

input file .

● Handling of macro definition within macro:- When a macro definition is encountered it is entered

in the DEFTAB. The normal approach is to continue entering till MEND is encountered. If there is a

program having a Macro defined within another Macro.While defining in the DEFTAB the very first

MEND is taken as the end of the Macro definition. This does not complete the definition as there is

another outer Macro which completes the definition of Macro as a whole. Therefore the DEFINE

procedure keeps a counter variable LEVEL.Every time a Macro directive is encountered this counter is

incremented by 1. The moment the innermost Macro ends indicated by the directive MEND it starts

decreasing the value of the counter variable by one. The last MEND should make the counter value set

to zero. So when LEVEL becomes zero, the MEND corresponds to the original MACRO directive.

 Dept. of CSE, CCE

5.3Machine-independent Macro-Processor Features.

The design of macro processor doesn’t depend on the architecture of the machine. We will be

studying some extended feature for this macro processor. These features are:

● Concatenation of Macro Parameters

● Generation of unique labels

● Conditional Macro Expansion

● Keyword Macro Parameters

5.3.1Concatenation of Macro parameters:

● Most macro processor allows parameters to be concatenated with other character strings.

Suppose that a program contains a series of variables named by the symbols XA1, XA2,

XA3,…, another series of variables named XB1, XB2, XB3,…, etc. If similar processing

is to be performed on each series of labels, the programmer might put this as a macro

instruction.

● The parameter to such a macro instruction could specify the series of variables to be

operated on (A, B, etc.). The macro processor would use this parameter to construct the

symbols required in the macro expansion (XA1, XB1, etc.).

 Dept. of CSE, CCE

● Suppose that the parameter to such a macro instruction is named &ID. The body of the

macro definition might contain a statement like

▪ LDA X&ID1

● & is the starting character of the macro instruction; but the end of the parameter is not marked.

So in the case of &ID1, the macro processor could deduce the meaning that was intended.

● If the macro definition contains &ID and &ID1 as parameters, the situation would be

unavoidably ambiguous.

● Most of the macro processors deal with this problem by providing a special concatenation

operator. In the SIC macro language, this operator is the character →. Thus the statement

LDA X&ID1 can be written as

LDA X&ID→1

● The above figure shows a macro definition that uses the concatenation operator as previously

described. The statement SUM A and SUM BETA shows the invocation statements and the

corresponding macro expansion.

5.3.2Generation of Unique Labels

● it is not possible to use labels for the instructions in the macro definition, since every expansion

of macro would include the label repeatedly which is not allowed by the assembler.

● We can use the technique of generating unique labels for every macro invocation and

expansion.

● During macro expansion each $ will be replaced with $XX, where xx is a two- character

alphanumeric counter of the number of macro instructions expansion.

For example,

XX = AA, AB, AC…

This allows 1296 macro expansions in a single program.

The following program shows the macro definition with labels to the instruction.

The following figure shows the macro invocation and expansion first time.

● If the macro is invoked second time the labels may be expanded as $ABLOOP $ABEXIT.

5.3.3Conditional Macro Expansion
o IF ELSE

o WHILE loop

● We can modify the sequence of statements generated for a macro expansion depending on

conditions.

IF ELSE ENDIF structure

● Consider the following example.

● Here the definition of RDBUFF has two additional parameters. &EOR(end of record)

&MAXLTH(maximum length of the record that can be read)

● The macro processor directive SET – The statement assigns a value 1 to &EORCK and

&EORCK is known as macrotime variable. A macrotime variable is used to store working

values during the macro expansion. Any symbol that begins with & and that is not a macro

instruction parameter is assumed to be a macro time variable. All such variables are initialized to

a value 0.

● Implementation of Conditional macro expansion- Macro processor maintains a symbol table that

contains the values of all macrotime variables used. Entries in this table are made when SET

statements are processed. The table is used to look up the current value of the variable.

● Testing of Boolean expression in IF statement occurs at the time macros are expanded. By the

time the program is assembled all such decisions are made and conditional macro instruction

directives are removed.

● IF statements are different from COMPR which test data values during program expansion.

Looping-WHILE

● Consider the following example.

● Here the programmer can specify a list of end of record characters.

● In the macro invocation statement there is a list(00,03,04) corresponding to the parameter &EOR.

Any one of these characters is to be considered as end of record.

● The WHILE statement specifies that the following lines until the next ENDW are to be generated

repeatedly as long as the condition is true.

● The testing of these condition and the looping are done while the macro is being expanded.The

conditions do not contain any runtime values.

● %NITEMS is a macroprocessor function that returns as its value the number of members in an

argument list. Here it has the value 3. The value of &CTR is used as a subscript to select the

proper member of the list for each iteration of the loop. &EOR[&CTR] takes the values 00,03,04

.

● Implementation- When a WHILE statement is encountered during a macro expansion the

specified Boolean expression is evaluated , if the value is false the macroprocessor skips ahead in

DEFTAB until it finds the ENDW and then resumes normal macro expansion(not at run time).

5.3.4Keyword Macro Parameters

● All the macro instruction definitions used positional parameters. Parameters and

arguments are matched according to their positions in the macro prototype and the

macro invocation statement.

● The programmer needs to be careful while specifying the arguments. If an argument

is to be omitted the macro invocation statement must contain a null argument

mentioned with two commas.

● Positional parameters are suitable for the macro invocation. But if the macro

invocation has large number of parameters, and if only few of the values need to be

used in a typical invocation, a different type of parameter specification is required.

● Eg: Consider the macro GENER which has 10 parameters, but in a particular

invocation of a macro only the third and nineth parameters are to be specified. If

positional parameters are used the macro invocation will look like

GENER , , DIRECT, , , , , , 3,

● But using keyword parameters this problem can be solved. We can write

GENER TYPE=DIRECT, CHANNEL=3

Keyword parameters

● Each argument value is written with a keyword that names the corresponding

parameter.

● Arguments may appear in any order.

● Null arguments no longer need to be used.

● It is easier to read and much less error-prone than the positional method.

5.4 Macro Processor Design Options

5.4.1Recursive Macro Expansion

● We have seen an example of the definition of one macro instruction by another. But we have

not dealt with the invocation of one macro by another. The following example shows the

invocation of one macro by another macro.

Problem of Recursive Expansion

● Previous macro processor design cannot handle such kind of recursive macro

invocation and expansion

o The procedure EXPAND would be called recursively, thus the invocation

arguments in the ARGTAB will be overwritten.

o The Boolean variable EXPANDING would be set to FALSE when the “inner”

macro expansion is finished, i.e., the macro process would forget that it had

been in the middle of expanding an “outer” macro.

The procedure EXPAND would be called when the macro was recognized. The arguments from the

macro invocation would be entered into ARGTAB as follows:

Parame
ter

Value

1 BUFFE
R

2 LENG
TH

3 F1

4 (unused
)

- -

The Boolean variable EXPANDING would be set to TRUE, and expansion of the macro

invocation statement would begin. The processing would proceed normally until statement

invoking RDCHAR is processed. This time, ARGTAB would look like

Paramet

Value

er

1 F1

2 (Unuse
d)

-- --

At the expansion, when the end of RDCHAR is recognized, EXPANDING would be

set to FALSE. Thus the macro processor would ‘forget’ that it had been in the middle of

expanding a macro when it encountered the RDCHAR statement. In addition, the arguments

from the original macro invocation (RDBUFF) would be lost because the value in ARGTAB

was overwritten with the arguments from the invocation of RDCHAR.

● Solutions

o Write the macro processor in a programming language that allows recursive

calls, thus local variables will be retained.

o If you are writing in a language without recursion support, use a stack to take

care of pushing and popping local variables and return addresses.

5.4.2General-Purpose Macro Processors

● Macro processors that do not dependent on any particular programming language,

but can be used with a variety of different languages

● Pros

o Programmers do not need to learn many macro languages.

o Although its development costs are somewhat greater than those for a

language specific macro processor, this expense does not need to be repeated

for each language, thus save substantial overall cost.

● Cons

o Large number of details must be dealt with in a real programming language

▪ Situations in which normal macro parameter substitution should not

occur, e.g., comments.

▪ Facilities for grouping together terms, expressions, or statements. Eg: some

languages use begin and end . Some use { and }

▪ Tokens, e.g., identifiers, constants, operators, keywords

▪ Syntax used for macro definition and macro invocation statement is

different.

5.4.3Macro Processing within Language Translators

● The macro processors we discussed are called “Preprocessors”.

o Process macro definitions

o Expand macro invocations

o Produce an expanded version of the source program, which is then used as input

to an assembler or compiler

● You may also combine the macro processing functions with the language translator:

o Line-by-line macro processor

o Integrated macro processor

Line-by-Line Macro Processor

● Used as a sort of input routine for the assembler or compiler

o Read source program

o Process macro definitions and expand macro invocations

o Pass output lines to the assembler or compiler

● Benefits

o Avoid making an extra pass over the source program.

o Data structures required by the macro processor and the language translator can be

combined (e.g., OPTAB and NAMTAB)

o Utility subroutines can be used by both macro processor and the language

translator.

▪ Scanning input lines

▪ Searching tables

▪ Data format conversion

o It is easier to give diagnostic messages related to the source statements

Integrated Macro Processor

● An integrated macro processor can potentially make use of any information about the source

program that is extracted by the language translator.

o Ex (blanks are not significant in FORTRAN)

▪ DO 100 I = 1,20

● a DO statement

▪ DO 100 I = 1

● An assignment statement

● DO100I: variable (blanks are not significant in FORTRAN)

● An integrated macro processor can support macro instructions that depend upon the

context in which they occur.

● Disadvantages- They must be specially designed and written to work with a particular

implementation of an assembler or compiler.. Cost of development is high.

EDITORS AND DEBUGGING SYSTEMS

An Interactive text editor has become an important part of almost any computing environment.

Text editor acts as a primary interface to the computer for all type of “knowledge workers” as

they compose, organize, study, and manipulate computer-based information.

An interactive debugging system provides programmers with facilities that aid in

testing and debugging of programs. Many such systems are available during these days. Our

discussion is broad in scope, giving the overview of interactive debugging systems – not

specific to any particular existing system.

5.1 Text Editors:

● An Interactive text editor has become an important part of almost any computing environment.

Text editor acts as a primary interface to the computer for all type of “knowledge workers” as

they compose, organize, study, and manipulate computer- based information.

● A text editor allows you to edit a text file (create, modify etc…). For example the Interactive

text editors on Windows OS - Notepad, WordPad, Microsoft Word, and text editors on UNIX

OS - vi, emacs , jed, pico.

● Normally, the common editing features associated with text editors are, Moving the cursor,

Deleting, Replacing, Pasting, Searching, Searching and replacing, Saving and loading, and,

Miscellaneous(e.g. quitting).

5.1.1 Overview of the editing process

● An interactive editor is a computer program that allows a user to create and revise a target

document. Document includes objects such as computer diagrams, text, equations tables,

diagrams, line art, and photographs. In text editors, character strings are the primary elements

of the target text.

● Document-editing process in an interactive user-computer dialogue has four tasks:

1) Select the part of the target document to be viewed and manipulated

2) Determine how to format this view on-line and how to display it

3) Specify and execute operations that modify the target document

4) Update the view appropriately

● The above task involves traveling, filtering and formatting.

o Traveling – To locate the area of interest. This is done by operations such

as next screenful, bottom and find pattern.

o Filtering- extracts the relevant subset of the target document.

o Formatting- How the result of filtering will be seen as a visible

representation(the view) on a display screen.

o Editing- The target document is created or altered with a set of operations

such as insert, delete, replace, move and copy.

● There are two types of editors. Manuscript-oriented editor and program oriented editors.

Manuscript-oriented editor is associated with characters, words, lines, sentences and

paragraphs. Program-oriented editors are associated with identifiers, keywords, statements.

User wish – what he wants – formatted.

● So in overall the user might travel to the end of the document. A screenful of text would be

filtered, this segment would be formatted, and the view would be displayed on an output

device. The user could then edit the view.

5.1.2User Interface:

● Conceptual model of the editing system provides an easily understood abstraction of the

target document and its elements. For example, Line editors – simulated the world of the

key punch – 80 characters, single line or an integral number of lines, Screen editors –

Document is represented as a quarter-plane of text lines, unbounded both down and to the

right.

● The user interface is concerned with, the input devices, the output devices and, the

interaction language. The input devices are used to enter elements of text being edited, to

enter commands. The output devices, lets the user view the elements being edited and the

results of the editing operations and, the interaction language provides communication with

the editor.

● Input Devices are divided into three categories:

o text devices- are type writer like key boards on which a user presses and releases

keys sending a unique code for each key.

o button or choice devices- generate an interrupt causing an invocation of an

associated application program action. They include a set of function keys. Buttons

can be simulated in software.

o Locator devices – are two dimensional analog to digital converters that position a

cursor symbol on the screen by observing the user’s movement of the device. Eg:

mouse, data tablet. Returns the coordinates of the position of the device. Text

devices with arrow keys can be used as locator devices . Arrow shows left, right ,

up or down.

o Voice input devices- Translates spoken words to their textual equivalent.

● Output Devices lets the user view the elements being edited and the results of the editing

operations. CRT terminals use hardware assistance for such features as moving the cursor ,

inserting and deleting characters and lines etc.

● The interaction language is one of the common types.

o Typing or text command oriented- the user communicates with the editor by

typing text strings both for command names and for operands.These strings are sent

to the editor and echoed to the output device.This requires the user to remember the

commands.

o Function key oriented- In this each command is associated with a marked key on

the user’s keyboard.

o Menu oriented systems- A menu is a multiple choice set of text strings or icons

which are graphic symbols that represent object or operations. The user can perform

actions by selecting items from the menu. Some systems have the most used

functions on a main command menu and have secondary menus to handle the less

frequently used functions.

5.1.3Editor Structure:

Most text editors have a structure similar to that shown in the following figure. That is most

text editors have a structure similar to shown in the figure regardless of features and the

computers

Command language Processor accepts command, uses semantic routines – performs

functions such as editing and viewing. The semantic routines involve traveling, editing,

viewing and display functions.

● The command language processor accepts input from the user’s input devices and analyses

the tokens and syntactic structure of the commands. That is, it function like lexical and syntactic

phases of a compiler. It invokes the semantic routines directly. The command language

processor also produces an intermediate representation of the desired editing operations. This

representation is decoded by an interpreter that invokes the appropriate semantic routines.

● Editing Component - In editing a document, the start of the area to be edited is determined by

the current editing pointer maintained by the editing component. Editing component is a

collection of modules dealing with editing tasks. Current editing pointer can be set or reset due

to next paragraph, next screen, cut paragraph, paste paragraph etc..,.

● Travelling component – performs the setting of the current editing and viewing pointers and

thus determines the point at which the viewing/editing filtering begins.

● Editing filter- When the user issues an editing command the editing component invokes the

editing filter. This component filters the document to generate a new editing buffer based on

the current editing pointer as well as on the editing filter parameters.

● Filtering consists of selection of continuous characters beginning at the current point.

● Viewing component- thee start of the area to be viewed is determined by the viewing pointer.

This pointer is maintained by the viewing component. When the display need to be updated the

viewing component invokes the viewing filter. This component filters the document to

generate a new viewing buffer.

● Display component- The viewing buffer is then passed to the display component which

produces a display by mapping the buffer to a rectangular subset of the screen called window.

● The editing and viewing buffers can be independent or overlapped.

● The mapping of viewing buffer to window is accomplished by two components.

1. Viewing component- formulates an ideal view

2. Display component – takes this ideal view from viewing component and maps it

to the output device.

Simple relationship

between editing and

viewing buffers

● The components

of the editor deal

with a user

document on

two levels: In

main memory and

in the disk file system. Loading an entire document into main memory may be infeasible – only

part is loaded – demand paging is used – uses editor paging routines.

● Documents may not be stored sequentially as a string of characters. Uses separate editor data

structure that allows addition, deletion, and modification with a minimum of I/O and character

movement.

● Many editors use terminal control database. They can call terminal independent library routines

such as scroll down, or read cursor positions.

● Types of editors based on computing environment: Editors function in three basic types of computing

environments:

1. Time sharing

2. Stand-alone

3. Distributed.

Each type of environment imposes some constraints on the design of an editor.

● In time sharing environment, editor must function swiftly within the context of the load on the

computer’s processor, memory and I/O devices.

● In stand-alone environment, editors on stand-alone system are built with all the functions to

carry out editing and viewing operations – The help of the OS may also be taken to carry out

some tasks like demand paging.

● In distributed environment, editor has both functions of stand-alone editor; to run independently

on each user’s machine and like a time sharing editor, contend for shared resources such as files.

Interactive Debugging Systems:

An interactive debugging system provides programmers with facilities that aid in testing and

debugging of programs. Many such systems are available during these days. Our discussion is

broad in scope, giving the overview of interactive debugging systems – not specific to any

particular existing system.

Here we discuss

- Introducing important functions and capabilities of IDS

- Relationship of IDS to other parts of the system

- Debugging methods

Debugging Functions and Capabilities:

● One important requirement of any IDS is unit test functions specified by the programmer.

Such functions deal with execution sequencing , which is the observation and control of the

flow of program execution.Eg: The program may be suspended after a fixed number of

instructions are executed. The programmer can define break points. After the program is

suspended debugging commands can be used to diagnose errors.

● A Debugging system should also provide functions such as tracing and trace back

● Tracing can be used to track the flow of execution logic and data modifications. The control

flow can be traced at different levels of detail – procedure, branch, individual instruction, and

so on.

● Trace back can show the path by which the current statement in the program was reached. It

can also show which statements have modified a given variable or parameter. The statements

are displayed rather than as hexadecimal displacements.

● Program-Display capabilities. A debugger should have good program-display capabilities.

o Program being debugged should be displayed completely with statement numbers.

o The program may be displayed as originally written or with macro expansion.

o Keeping track of any changes made to the programs during the debugging session.

Support for symbolically displaying or modifying the contents of any of the variables

and constants in the program. Resume execution – after these changes.

● A debugging system should consider the language in which the program being debugged is

written. A single debugger – many programming languages – language independent. The

debugger- a specific programming language– language dependent.

● The debugging system should be able to deal with optimized code. Many optimizations

involve rearrangement of code in the program.Eg: Separate loops can be combined into single

loop.

● Storage of variables- When a program is translated the compiler assigns a home location in

memory for each variables. Variable values can be temporarily held in registers to improve

speed of access. If a user changes the value of a variable in home location while debugging

the modified value might not be used by the program.

● The debugging of optimized code requires cooperation from optimized compiler.

Relationship with Other Parts of the System:

● The important requirement for an interactive debugger is that it always be available.

Must appear as part of the run-time environment and an integral part of the system.

● When an error is discovered, immediate debugging must be possible. The debugger

must communicate and cooperate with other operating system components such as

interactive subsystems.

● Debugging is more important at production time than it is at application-development

time. When an application fails during a production run, work dependent on that

application stops.

● The debugger must also exist in a way that is consistent with the security and

integrity components of the system.

● The debugger must coordinate its activities with those of existing and future language

compilers and interpreters.

Debugging Methods

1. Debugging by Induction

2. Debugging by Deduction

3. Debugging by Backtracking

Debugging by Induction

● In induction one proceeds from the particulars to the whole.ie, By starting with the symptoms of

the error in the result of one or more test cases and looking for relationships among the symptoms.

1. Locate the pertinent data: Consider all the available data or symptoms about the problems

2. Organise the data: Pertinent data is structured to allow one to observe patterns of particular

importance and search for contradictions. One such organization structure can be a table.

3. Devise a hypothesis: In this step study the relationship between the clues and devise using

patterns, one or more hypothesis about the cause o the error.

4. Prove the hypothesis: Prove the reasonableness of the hypothesis before proceeding. A failure

to this, results in the fixing of only one symptom of the problem.

Debugging by Deduction
● Is a process of proceeding from general theories or premises to arrive at a conclusion.

1. Enumerate all possible cases- The first step is to develop all causes of the error.

2. Use the data to eliminate possible causes- By careful analysis of data particularly by

looking for contradictions attempt to eliminate all possible causes except one.

3. Refine the remaining hypothesis- The possible causes at this point may be correct. But

refine it to be more specific.

4. Prove the remaining hypothesis.

Debugging by Back Tracking

● For small programs the method of backtracking is more effective to locate errors.

● To use this method start at the place in the program where an incorrect result was produced and go

backwards in the program one step at a time. That is executing the program in reverse order to

derive the values of all variables in the previous step. Then the error can be localized.

Device Driver

A device driver is a particular form of software application that allows one hardware device

(such as a personal computer) to interact with another hardware device (such as a printer). A

device driver may also be called a software driver.

Drivers facilitate communication between an operating system and a peripheral hardware

device. Each driver contains knowledge about a particular hardware device or software

interface that other programs -- including the underlying operating system (OS) -- does not

have.

In the past, device drivers were written for specific operating systems and specific hardware

peripherals. If a peripheral device was not recognized by their computer's OS, the end user

had to locate and manually install the right driver.

Today, most operating systems include a library of plug-n-play drivers that allows peripheral

hardware to connect automatically with an operating system. This approach also has the

advantage of allowing programmers to write high-level application code without needing to

know what hardware their code will run on

https://www.techopedia.com/definition/2252/peripheral-device
https://www.techopedia.com/definition/2252/peripheral-device
https://www.techopedia.com/definition/3413/plug-and-play-pnp

